Please use this identifier to cite or link to this item:
標題: 氮化鋁薄膜在高溫控制氣氛下氧化行為之研究
Oxidation behavior of AlN films at high temperatures under controlled atmospheres
作者: 林志遠
Lin, Chih-Yuan
關鍵字: AlN;氮化鋁;Al2O3;oxidation;sintering;氧化鋁;氧化;燒結
出版社: 材料工程學系所
引用: [1] B. Gil and F. A. Ponce, “Chapter 4 structural defects and materials performance of the Ⅲ-Ⅴ nitrides”, Group Ⅲ Nitride Semiconductor Compounds Physics and Application, (1998). [2] K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohrani, and R. Beresford, “Demonstration of a silicon field-effect transistor using AlN as the gate dielectric” Appl. Phys. Lett. 66 (1995) 3179. [3] C. C. Cheng, Y. C. Chen, H. J. Wang, and W. R. Chen, “Morphology and structure of aluminum nitride thin films on glass substrabe” Jan. J. Appl. Phys., 35 (1996) 1880. [4] F. Ansart, H. Ganda, and R. Saporte, “High textured AlN thin films grown by RF magnetron sputtering;composition, structure, morphology, and hardness” J. P. Traverse, Thin solid films, 260 (1995) 38. [5] S. Han, H. Y. Chen, and H. C. Shih, “Argon ion beam in a dual ion beam sputtering system influence on the aluminum nitride films microstructure” Vacuum, 78 (2005) 539. [6] H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of c-axis orientated AlN thin films by low-temperature reactive sputtering” Jpn. J. Appl. Phys., 31 (1992) 3446. [7] 王宏文, “淺談表面聲波感測器(下)”, 工業材料, 91 (1994) 47 [8] S. Bender, F. L. Dickert, W. Mokwa, P. Pachatz, “Investigation on temperature controlled monolithic integrated surface acoustic wave gas srnsors” Sensors and Actuators, B93 (2003) 164. [9] H. E. Cheng, T. C. Lin, and W. C. Chen, “Preparation of [002] oriented AlN thin films by mid frequency reactive sputtering technique” Thin solid films, 425 (2003) 85. [10] J. Kolodzey, E. A. Chowdhury, G. Qui, and J. Olowolafe, “The effects of oxidation temperature on the capacitance-voltage characteristics of oxidized AlN films on Si” Appl. Phys. Lett, 71 (1997) 3802. [11] 莊達人 編著,“VLSI 製造技術”,高立,1994. [12] J. L. Vossen and W. Kern, “Thin Film Processes”, 1978. [13] 賴耿陽 編撰,“IC製程之濺射技術”,復漢出版社印行,1988. [14] J. L. Vossen, The Materials Science of Thin Films, 1991. [15] M. Ohring, The Materials Science of Thin Films, Boston, 1992, p195-198. [16] B. A. Movchan and A. V. Demchishin, “Structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum, oxide and zirconium dioxide”, Phys. Met. Metallogr., 28 (1969) 83. [17] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings” J. Vac. Sci. Technol., 11 (1974) 666. [18] G. A. Slack, “Nonmetallic crystals with high thermal conductivity” J. Phys. Chem. Solids, 34 (1973) 321. [19] S. Han, H. Y. Chen, and H. C. Shih, “Argon ion beam voltage in a dual ion beam sputtering system influence on the aluminum nitride films microstructure” Vacuum 78 (2005) 539. [20] I. C. Oliveira, K. G. Grigorov, H. S. Maciel, M. Massi. and C. Otani, “High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness” Vacuum 75 (2004) 331. [21] J. H. Edgar and W. J. Meng, Properties of Group Ⅲ Nitrides, 1993. [22] C. Klein and C. S. Hurlbut, The Manual of Manual of Mineralogy, New York, 1999, p. 340, 342. [23] X. H. Xu, H. S. Wu, C. J. Zhang, and Z. H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering” Thin solid films 388 (2001) 62. [24] R. Yue, Y. Wang, Y. Wang, and C. Chen, “SIMS study on the initial oxidation process of AlN ceramic substrate in the air” Appl. Surf. Sci., 148 (1999) 73. [25] E. W. Osborne and M. G. Norton, “Oxidation of aluminum nitride” J. Mater. Sci., 33 (1998) 3859. [26] J. W. Lee, I. Radu, and M. Alexe, “Oxidation behavior of AlN substrate at low temperature” J. Mater. Sci., 13 (2002) 131. [27] T. Sato, K. Haryu, T. Endo and M. Shimada, “High temperature oxidation of hot-pressed aluminum nitride by water vapour” J. Mater. Sci., 22 (1987) 2277. [28] D. Robinson and R. Dieckmann, “Oxidation of aluminum nitride substrates” J. Mater. Sci., 29 (1994) 1949. [29] W. J. Tseng, C. J. Tsai, and S.L. Fu, “Oxidation microstructure and metallization of aluminum nitride substrates” J. Mater. Sci., 11 (2000) 131. [30] A. L. Brown and M. G. Norton, “Oxidation kinetics of AlN powder” J. Mater. Sci. Lett., 17 (1998) 1519. [31] Y. Q. Li, T. Qiu, and J. Xu, Mater. “Effect of thermal oxidation treatment in air in the hydrolysis of AlN powder” Res. Bull., 32 (1997) 1173. [32] A. D. Katnani and K. I. Papathomas, “Kinetics and initial stages of oxidation of aluminum nitrides: Thermogravimetric analysis and x-ray photoelectron spectroscopy study” J. Vac. Sci. Technol., A5 (1987) 1335. [33] D. Suryanarayana, “Oxidation kinetics of aluminum nitride” J. Am. Cerm. Soc., 73 (1990) 1108. [34] D. J. Duchesne, and K. W. Hipps, “The formation of transition aluminum during oxidation of AlN” J. Mater. Sci. Lett. 18 (1999) 877. [35] M. I. Baraton and P. Quintard, “Infrared evidence of order-disorder phase transitions (γ→δ→α) in Al2O3” J. Mol. Struct. 79 (1982) 337. [36] 王慶鈞,“氮化鋁薄膜之製程、微結構與氧化行為研究” 國立中興大學材料工程所博士論文,2004年. [37] E. A. Chowdhury, J. Kolodzey, and J. O. Olowolafe, “Thermally oxidized AlN thin films for device insulators” Appl. Phys. Lett., 70 (1997) 2732. [38] F. Ansart, H. Ganda, R. Saporte, and J. P. Traverse, “Study of the oxidation of aluminium nitride coatings at high temperature” Thin solid. films., 260 (1995) 38. [39] J. Kolodzey, E. A. Chowdhury, G. Qui, and Olowolafe, “The effects of oxidation temperature on the capacitance-voltage characteristics of oxidized AlN films on Si” Appl. Phys. Lett. 71 (1997) 3802. [40] 黃紘筠,“前導物為gibbsite的κ- →α-Al2O3 相轉換晶粒變化與粒體發育現象” 國立成功大學材料工程所碩士論文,2004年. [41] Y. M. Chiang and W. D. Kingery, “Physical Ceramics”, 1997. [42] J. F. Nye, “Physical Properties of Crystals”, 1955. [43] I. C. Noyan and J. B. Cohen, “Residual Stress Measurement by Diffraction and Interpretation” , 1987. [44] C. H. Ma, J. H. Huang, and H. Chen, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction” Thin solid films. 418 (2002) 73. [45] 汪建民,材料分析,中國材料科學學會,2005 (第四版) [46] 林鶴南,儀器總覽-表面分析儀器,行政院國家科學委員會精密儀器發展中心,2002,p. 29-31. [47] B. D. Cullity, “Elements of X-ray Diffraction” , (1997). [48] G. A. Slack, “Nonmetallic crystals with high thermal conductivity” J. Phys. Chem. Solids, 34 (1973) 321. [49] H. C. Lee, G. H. Kim, S. K. Hong, K. Y. Lee, Y. J. Yong, C. H. Chun and J. Y. Lee, “Influence of sputtering pressure on the microstructure evolution of AlN thin films prepared by reactive sputtering” Thin Solid Films 261 (1995) 148. [50] P. Martin, R. Netterfield, T. Kinder, and A. Bendavid, “Optical properties and stress of ion-assisted aluminum nitride thin films ”Appl. Opt. 31 (1992) 6734. [51] S. Schoser, G. Brauchle, and J. Forget et al., “XPS investigation of AlN formation in aluminum alloys using plasma source ion implantation” Surf. Coat. Technol. 103-104 (1998) 222. [52] D. Manova, V. Dimitrova, W. Fukarek and D. Karpuzov, “Investigation of d.c.-reactive magnetron-sputtering AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarized infra-red reflection” Surf. Coat. Technol. 106 (1998) 205. [53] D. Manova, V. Dimitrova, D. Karpuzov, and R. Yankov, “Reactively DC magnetron sputtered thin AlN films studied by X-ray photoelectron spectroscopy and polarized infrared reflection” Vacuum. 52 (1999) 301. [54] J. A. Taylor and J. W. Rabalais, “Reaction of N2+ beams with aluminum surfaces” J. Chem. Phys. 75 (1981) 1735. [55] J. C. Sanchez, M. D. Alcala, C. Real, and A. Fernandez, “The use of X-ray photoelectron spectroscopy to characterize fine AlN powders submitted to mechanical attrition” Nanostructured Materials 11 (1999) 249. [56] A. Mahmood, R. Machorro, and S. Muhl, “Optical and surface analysis of DC-reactive sputtered AlN films” Diamond and Related Materials 12 (2003) 1315. [57] S. Han, H. Y. Chen and H. C. Shih, “Argon ion beam voltage in a dual ion beam sputtering system influence on the aluminum nitride films microstructure” Vacuum 78 (2005) 539. [58] H. M. Liao, R. N. S. Sodhi, and T. W. Coyle, “Surface composition of AlN powders studied by X-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy” J. Vac. Sci. Technol. 11 (1993) 2681. [59] J. Huang, L. Wang, and Q. Shen, “Preparation of AlN thin films by nitridation of Al-coated Si substrate” Thin Solid Films 340 (1999) 137. [60] S. Gredelj, A. R. Gerson, S. Kumar and G. P. Cavallaro, “Characterization of aluminum surfaces with and without plasma nitriding by X-ray photoelectron spectroscopy” Appl. Surf. Sci. 174 (2001) 240. [61] N. Laidani, L. Vanzetti, M. Anderle, and A. Basillais, “Chemical structure of films grown by AlN laser ablation: an X-ray photoelectron spectroscopy study” Surf. Coat. Technol. 122 (1999) 242. [62] M. Ishihara, H. Yumoto, T. Tsuchiya, and K. Akashi, “Effect of voltage on AlN thin films prepared by electron shower method” Thin Solid Films 281-282 (1996) 321. [63] M. Zhu, P. Chen, and R. K. Y. Fu, “AlN thin films fabricated by ultra-high vacuum electron-beam evaporation with ammonia for silicon-on-insulator application” Appl. Surf. Sci. 239 (2005) 327. [64] J. A. Kovacich, J. Kasperkiewicz, and D. Lichtman, “Auger electron and X-ray photoelectron spectroscopy of sputter deposited aluminum nitride” J. Appl. Phys. 55 (1984) 2935. [65] W. E. Lee and W. M. Rainforth, Ceramic Microstructures, London, 1994, p. 35-38, 266-268. [66] Thermochemical Data of Pure Substances, 3rd ed. edited by I. Barin and G. Platzki (VCH, New York, 1995), Vol. 1. [67] S. Venkataraj, D. Severin, R. Drese, F. Koerfer, and M. Wuttig, “Structural, optical and mechanical properties of aluminium nitride films prepared by reactive DC magnetron sputtering” Thin Solid Films. 502 (2006) 235. [68] K. H. Muller, “Stress and microstructure of sputter-deposited thin films: Molecular dynamics investigations” J. Appl. Phys. 62 (1987) 1796.
本研究主要是探討氮化鋁薄膜於不同氮氧含量之氣氛(空氣、氮氣、氮氫(N2/H2=9)混合氣)及真空高溫熱處理後的行為,溫度範圍為700~1300℃ (真空範圍300~1100℃),持溫時間為2~12小時 (真空時間為2小時)。其中使用X光繞射儀 (XRD)與微拉曼光譜儀 (Micro Raman spectrometer)來分析其結晶相變化,並使用場發射式電子顯微鏡 (FESEM)來觀察其表面形貌。不同氮氧含量之氣氛熱處理後的現象包含了氧化造成的顏色變化以及氧化鋁的相轉變,而真空熱處理方面則包含其薄膜應力變化的情形。
在空氣下,時間2小時,由FESEM圖知在700℃以下仍然呈現與剛鍍著相同的粒狀形貌,在1050℃時出現兩種截然不同的氧化鋁表面形貌(塊狀及緻密結構)同時有晶界的出現,由Micro Raman解析出此塊狀結構為δ-Al2O3而緻密結構為α-Al2O3。而晶界的產生是由於燒結行為的發生。同樣的在氮氣下,1050~1100℃之間表面形貌也存在著兩種結構(塊狀:δ-Al2O3與緻密狀:α-Al2O3)。然而氮氫混合氣下,因為此氣氛氧分壓相當低 (10-24~10-16 atm),所以能看到氮化鋁薄膜隨著溫度增高其表面形貌緩慢變化的情形。在1050℃表面形貌由原先的粒狀改變為片狀,到達1200℃時表面形貌同樣也存在著塊狀及緻密狀結構。
氮化鋁薄膜於真空下300~1100℃熱處理2小時後其微結構與結晶相都與剛鍍著時相同。使用XRD法量測剛鍍著之氮化鋁薄膜應力,其值為-0.4 Gpa,隨著溫度的增加應力由原先的壓應力轉變成張應力,其應力的轉變可能與薄膜內部缺陷與孔洞有關。更進一步,比較XRD與雷射曲率法所量測到剛鍍著之氮化鋁薄膜應力值,其量測到之應力分別為-0.4 Gpa與-0.8 Gpa,其差異的可能原因為XRD法在低應力的薄膜中敏感度較低,造成與雷射曲率法求得之應力有所差距,所以XRD方法並不適合用來量測低應力薄膜。

In this research, oxidation behavior of aluminum nitride films in the atmosphere with different nitrogen/oxygen ratios (air、nitrogen、N2/H2=9) and vacuum has been investigated. The studied temperature was range was 700-1300 oC (in the atmosphere and was 300-1100 oC in vacuum.), and the soaking time was in the range of 2-12 h (vacuum: 2 h). Changes in the crystalline phase of aluminum nitride films were analyzed by X-ray diffraction (XRD) and Micro Raman spectroscopy. The surface morphology of aluminum nitride films before and after annealing was examined by field emission scanning electron microscopy (FESEM). Oxidation of aluminum nitride films resulted in color changes and phase transformation. In vacuum residual stress was also determined.
Annealing below 700℃ for 2 h in air retained original granular structure as shown by FESEM analyse. At 1050 oC, oxidized aluminum nitride surface showed entirely different morphology (flaky and dense structures); grain boundaries were clearly visible on the surface. Resultant alumina structure was examined by Micro Raman spectroscopy. Based on the results, the flaky and dense structures were δ-Al2O3 and α-Al2O3, respectively. The visible grain boundarues were due to the sintering process. Oxidization between 1050℃ and 1100℃ for 2 h in nitrogen also resulted in similar structures (flaky structure: δ-Al2O3 and dense structure: α-Al2O3). Much slower oxidation of aluminum nitride films was observed in N2/H2=9 atmosphere because the oxygen partial pressure was considerbly low. At 1050℃, the surface morphology changed from a granular structure to a sliced; at 1200oC both fla and flaky dense structures showed up.
The crystalline structure of aluminum nitride films treated in vacuum at 300-1100oC for 2 h was similar to that of as-deposited films. Residual stresses of the aluminum nitride film were determined by XRD. The measured residual stress of as deposited films was -0.4GPa. The stress changed from a compressive stress to a tensile stress with increasing temperature. Different stress measurements method (XRD and laser-based stress measurement), resulted in different values -0.4GPa from XRD and -0.8GPa from laser curvatuse measurement. This is because XRD measurement has a lower sensitivity at lower stress. Consequently, the XRD method is not suitable for the lower stress films.
Appears in Collections:材料科學與工程學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.