Please use this identifier to cite or link to this item:
標題: 碳酸鹽對低氫系銲條銲接性質影響之研究
Effect of carbonates on welding properties of low hydrogen electrode
作者: 張家銘
Chang, Chia-Ming
關鍵字: carbonate;碳酸鹽;metal transfer;weld geometry;microstructure;mechanical properties;熔滴過渡;銲道形狀;顯微結構;機械性質
出版社: 材料工程學系所
引用: 1. 張清輝、吳憲平、洪波,銲接材料研制理論與技術,北京冶金工業出版社,第1-2頁,2002年。 2. 張文鉞、張炳范、杜則裕,銲接冶金學(基本原理),北京機械工業出版社,第76-84頁,1991年。 3. AWS A5.1/A5.1M, “Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding,” American welding society, 2004. 4. 陳祝年,銲接設計簡明手冊,北京機械工業出版社,第19頁,1997年。 5. 張清輝、吳憲平、洪波,銲接材料研制理論與技術,北京冶金工業出版社,第78-87頁,2002年。 6. E.M. Levin, W.F. McMurdie, and C.R. Robbins, “Phase Diagrams for Ceramists,” American Ceramic Society, pp. 451, 1964. 7. 張文鉞、周振丰,熔銲原理及工藝(上),北京機械工業出版社,1979年。 8. 張文鉞,銲接冶金與金屬銲接性,北京機械工業出版社,1987年。 9. W.Spraragen and B.A. Lengrel, “Physics of the Arc and the Transfer of Metal in Arc Welding,” Welding Journal, vol. 21, no. 1, pp. 2s-42s, 1942. 10. 安藤弘平、長谷川光雄,溶接アーク現象,第六版,產報株式會社,日本,第55-62頁,1978年。 11. H. Ayrton, The Electric Arc, London, 1902. 12. K. Meller, “Beitrag zur Beurteilung von Schweisselektroden," Elektroschwg, vol. 5, pp.61-91,1934. 13. 柴田、鯉淵,電弧溶接用被覆の電弧現象に及はす二,三の,溶協誌,第5卷,第164頁,1935年。 14. 高橋富士雄,赤鐵礦,石灰石,矽酸を被覆劑の主成份とする電極棒の研究,溶協誌,第8卷,第307頁,1938年。 15. 安藤弘平、長谷川光雄,溶接アーク現象,第六版,產報株式會社,日本,第299-303頁,1978年。 16. F. Creedy, “Forces of Electric Origin in the Iron Arc,” T.A.I.E.E., vol. 51, no. 7, pp. 556-566,1932. 17. V.N. Belousov and D.D. Ostrov, “ The Effect of Electromagnetic Forces on the Formation of Plasma Flows in the Welding Arc,” Welding Production, no. 6, pp. 1-3, 1979. 18. R.L. Apps, L.M. Gourd, and K.A. Nelson, “Effect of Welding Variables upon Bead Shape and Size in Submerged-Arc Welding,” Welding and Metal Fabrication, vol. 31, no. 11, pp. 453-457, 1963. 19. R.C. Waugh and O.P. Eberlein, “Penetration Factors in Metallic Arc Welding,” Welding Journal, vol. 33, no. 7, pp. 285s-288s, 1954. 20. B.J. Bradstreet, “Effect of Surface Tension and Metal Flow on Weld Bead Formation,” Welding Journal, vol. 47, no. 7, pp. 314s-322s, 1968. 21. T.H. Hazlett, “Coating Ingredients, Influence on Surface Tension, Arc Stability and Bead Shape,” Welding Journal, vol. 36, no.1, pp. 18s-22s, 1957. 22. J.K. Davis and F.E. Bartell, “Determination of Surface Tension of Molten Materials,” Analytical Chemistry, vol. 20, no. 12, pp. 1182-1185, 1948. 23. J.M. Andres, E.H. Hauser, and W.B. Tucker, “Boundary Tension by Pendent Drops,” Journal of Physical Chemistry, vol. 42, no. 8, pp. 1001-1019, 1930. 24. D.S. Nagesh and G.L. Datta, “Prediction of Weld Bead Geometry and Penetration in Shielded Metal-Arc Welding Using Artificial Neural Networks,” Journal of Materials Processing Technology, vol. 123, pp. 303-312, 2002. 25. I.S. Kim, W.H. Kwon, and E. Siores, “An Investigation of a Mathematical Model for Predicting Weld Bead Geometry,” Canadian Metallurgical Quarierly, vol. 35, no. 4, pp. 385-392, 1996. 26. D.D. Schwemmer, D.L. Olson, and D.L. Williamson, “The Relationship of Weld Penetration to the Welding Flux,” Welding Journal, vol. 58, no. 5, pp. 153s-160s, 1979. 27. C.E. Jackson and A.E. Shrubsall, “Control of Penetration and Melting Ratio with Welding Technique,” Welding Journal., vol. 32, no.4, pp. 172s-178s, 1953. 28. S.S. Tuliani and R.A. Farrar, “Effects of Silicon in Submerged-Arc Weld Metals at Liw Concentrations,” Welding and Metal Fabrication, vol. 43, no. 7, pp. 553-558 1975. 29. J.G. Garland and R.P. Kirkwood, “Towards Improved Submerged Arc Weld Metal EM DASH 2,” Metal Construction, vol. 7, no. 6, pp. 320-330, 1975. 30. 陳祝年,銲接設計簡明手冊,北京機械工業出版社,第36-38頁,1997年。 31. B.J. Keene and K.C. Mills, “The Physicochemical Properties of Slags, Part 1: Review of the Density and Surface Tension of CaF2-Based Slags,” National Physical Laboratory, NPL Report, Chem. 60, 1976. 32. M. Gohler, “ Uber di Abschiedbarkeit der bei der Desoxydation von Stahl mit Mangan-Silizium-Aluminium-Legierungen und mit Loheren Aluminiumzusatz gebildeten Oxyde,” Freiberger Forschungshefte, pp. 1-120,1963. 33. IIW, “Classification of Metal Transfer on Arc Electric Welding Processes,” Welding in the World, vol. 15, no. 5/6, pp. 113-116, 1977. 34. J. Wegrzyn, “Arc Properties in Manual Welding with Coated Electrodes,” Metal Construction, vol. 12, no. 7, pp. 326-333, 1980. 35. J.C. Amson, “Lorentz Force in the Molten Tip of an Arc Electrode,” British Journal of Applied Physics, vol.16, pp. 1169-1179, 1965. 36.J.F. Lancaster, “The Transfer of Metal from Coated Electrodes,” Metal Construction and British Welding Journal, vol. 1,no. 10, pp. 370-373, 1971. 37. X. Sun, “Effect of Fluoride on Usability of Stainless Steel Electrode and Transitional Characteristics of Droplet,” Material Science and Technology, vol. 5, no. 4, pp. 1-4, 1997. 38. 石崎敬三,被覆アーク熔接棒の溶滴移行性について,溶學誌,第30卷,第九期,第707頁,1961年。 39. D.J. Abson and R. Dolby, Welding Journal Institute Belletin, pp. 100, April, 1980. 40. P.G. Shewmon, Transfermations in Metals, McGraw Hill,1969. 41. C.S. Smith, Trans. AIME, vol. 45, pp. 533, 1953. 42. IIW, “ Guidelines for the Classification of Ferrite Steel Weld Metal Microstructural Constituents Using the Light Microscope,” Welding in the World, vol. 24, no. 7/8, pp. 144-148,1986. 43. D.J. Alson, A. Duncan, and R. Pargeter, “Guide to the light microscope examination of ferritic steel weld metals,” Welding in the World, vol. 29, no. 7/8, pp. 160-177, 1991. 44. 董若璟,冶金原理,北京機械工業出版社,1980年。 45. 吳泰伯、許樹恩,X光繞射原理與材料結構分析,中國材料科學學會,第422-425頁,民國81年。 46.汪建民,材料分析,中國材料科學學會,第471-500頁,民國87年。 47. H. Hu and R.S. Cline, “Mechanism of Reorientation During Recrystallization Polycrystalline Titanium,” Transactions of the Metallurgical Society of AIME, vol. 242, no. 6, pp. 1013-1024, 1968. 48. E.O. Hall, “The Deformation and Ageing of Mild Steel,” Proceedings of Physical Society, London, England, vol. 64, no. 9, pp.747-753,1951. 49. N.J. Petch, “The cleavage strength of polycrystals,” J. Iron and Steel Institute, London, England, vol. 174, pp. 25-28, 1953. 50. 中國材料科學學會材料手冊編審委員會,鋼鐵材料手冊,中國材料科學學會,第31頁,民國87年。 51. 中國材料科學學會材料手冊編審委員會,鋼鐵材料手冊,中國材料科學學會,第715頁,民國87年。 52. S.S. Tuliani, T. Boniszewski, and N.F. Eaton, “ Carbonate Fluxes for Submerged-Arc Welding of Mild Steel,” Welding and Metal Fabrication, vol. 40, no. 7,pp. 247-259, 1972. 53. B.M. Patchett, G.A. Demos, and R.L. Apps, “The Influence of Flux Compsition and Welding Parameters on Heat Distribution in Submerged-Arc Welding,” Welding Research International, vol. 4, no. 2, pp. 81-94, 1974. 54. G.M. Evans, “Microstructure and Properties of Ferritic Steel Welds Containing Ti and B,” Welding Journal, vol.75, no.8, pp. 251s-260s,1996. 55. G.M. Evans, “Microstructure and Properties of Ferritic Steel Welds Containing Al and Ti,” Welding Journal, vol. 74, no. 8, pp. 249s-261s, 1995. 56. G.M. Evans, “The Effect of Micro-Alloying Elements in C-Mn Steel Weld Metals,” Welding in the World, vol. 31, no. 1, pp. 12-19, 1993. 57. G.M. Evans, “The Effect of Titanium in SMA C-Mn Multipass Deposits,” Welding Journal, vol. 71, no. 12, pp. 447s-454s, 1992. 58. G.M. Evans, “The Effect of Titanium in Manganese Containing SMA Weld Deposits,” Welding Journal, vol. 72, no. 3, pp. 123s-133s, 1993. 59. A.B. Glover, J.T. McGrath, M.J. Tinkler, and G.C. Weatherly, “The Influence of Cooling Rate and Composition on Weld Metal Micro- Structures in a C-Mn and a HSLA Steel,” Welding Journal, vol. 56, no. 9, 267s, 1977. 60. M.I. Onsoien, S. Liu, and D.L. Olson, “Shielding Gas Oxygen Equivalent in Weld Metal Microstructure Optimization,” Welding Journal, vol. 64, no. 7,pp. 216s-224s, 1996. 61. N.A. Fleck, O. Grong, G..R.Edwards, and D.K. Matlock, “The Role of Filler Metal Wire and Flux Composition in Submerged Arc Weld Metal Transformation Kinetics,” Welding Journal, vol. 65, no. 5, pp. 139s,1986.
在機械性質方面,碳酸鹽的添加會影響到硬度、拉伸及衝擊性質,添加 MgCO3與Na2CO3會造成硬度、拉伸及衝擊性質劣化。反之,添加K2CO3及BaCO3有助於硬度、抗拉強度及衝擊性質的提升。

Shielded metal arc welding flux was a multi-composition system. Therefore, it was difficult that investigated into the effect of the compositions for welding properties. In this study, various contents of carbonates, MgCO3, Na2CO3, K2CO3 and BaCO3, respectively, were added to investigate the bead shape, droplet size, and mechanical properties. It examined the effect of carbonates for bead shape and droplet size by automatic welding and droplet collection method, separately.
The results showed that MgCO3, Na2CO3 and BaCO3 increased the surface tension of the molten metal, but K2CO3 reduced the surface tension. The surface tension of the molten metal influenced on the width and height of bead . The surface tension increasing, not only bead width decreased, but bead height increased. In addition, droplet size increased with surface tension increased. Adding higher ionization potential carbonates in the welding flux made the penetration depth decease.
Phase identification was performed by X-ray diffraction analysis. It was found that BCC structure existed in all weld metal. Optical microscope was carried out to observe metallography. The microstructure included of the primary ferrite (grain boundary ferrite and intragranular polygonal ferrite), the ferrite with second phase, and acicular ferrite. Adding carbonates resulted in the variation of heat input to transfer microstructure.
So far as mechanical properties were concerned, the addition of carbonates affected hardness, tensile, and impact properties. MgCO3 and Na2CO3 diminished the welding quality. Oppositely, K2CO3 and BaCO3 improved mechanical properties.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.