Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11132
DC FieldValueLanguage
dc.contributor黃榮俊zh_TW
dc.contributor吳耀銓zh_TW
dc.contributor林克偉zh_TW
dc.contributor許薰丰zh_TW
dc.contributor.advisor歐陽浩zh_TW
dc.contributor.author邱孝豪zh_TW
dc.contributor.authorChiou, Shiao-Haoen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T06:47:05Z-
dc.date.available2014-06-06T06:47:05Z-
dc.identifier.citation1. D. J. Olego, Y. Okuno, T. Kawano, and M. Tamura, J. Appl. Phys. 71,4503 (1992) 2. D. J. Olego, Y. Okuno, and T. Kawano, J. Appl. Phys. 71, 4493 (1992). 3. L. Lazzarini, G. Attolini, D. Bertone, P. Franzozi, C. Pelosi, and G. Salviati, Inst. Phys. Conf. Ser. 134, 325 (1993). 4. Semiconductor wafer bonding: Science and Technology, Q.Y. Tong, U. Gösele , John Wiley & Sons, Inc .(1999). 5. Y. S. Wu, P. C. Liu, R. S. Feigelson, and R. K. Route, J. Appl. Phys. 91, 1973 (2002). 6. Y. S. Wu, R. S. Feigelson, R. K. Route, D. Zheng, L. A. Gordon, M. M. Fejer, and R. Byer, J. Electrochem. Soc. 145, 366 (1998) 7. T. Akatsu, A. Plößs, H.Stenzel, and U. Gösele, J. Appl. Phys. 86, 7146 (1999) 8. T. R. Chung, L. Yang, N. Hosoda, H. Takagi, and T. Suga, Appl. Surf. Sci. 117, 808 (1997) 9. G. Kästner, T. Akatsu, S. Senz, A. Plößs, and U. Gösele, Appl. Phys. A: Master. Sci. Process. 70, 13 (2000) 10. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Jonnopoulos, Reviews of Modern Physics, Vol 64, No. 4, 1045 (1992) 11. R. Car and M. Parrinello, Phys. Rev. Lett 55 (1985) 2471 12. M.P. Teter, M.C. Payne and D.C. Allan, Phys. Rev. B 40, 12255 (1989) 13. T. Tortilla, T. Fulmshir, T. SLlzLlki, Mater. Tran. 37, 1298 (l996) 14. Y. Shao, P. C. Clapp, J. A. Rifkin, Metal. Tran. 1477 (1996) 15. R. W. Smith, G. S. Was, Phys. Rev. 40, 10322 (1989) 16. F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. L. Ludowise, S. G. Hummel, and S. J. Rosner, Appl. Phys. Lett. 67,2060 (1995) 17. Z. L. Liau and D. E. Mull, Appl. Phys. Lett. 56, 737 (1990) 18. T. Akatsu, A. Plößs, H. Stenzel, and U.Gösele, J. Appl. Phys. 86, 7146 (1999) 19. F. E. Ejeckam, M. L. Seaford, and Y.-H. Lo, H. Q. Hou ,B. E. Hammons, Appl. Phys. Lett., Vol. 71, No. 6, (1997) 20. Po Chun Liu, Cheng Lun Lu, YewChung Sermon Wu, Ji-Hao Cheng, and Hao Ouyang, Appl. Phys. Lett. 85, 4831 (2004) 21. Q.Y. Tong, U. Gösele , Semiconductor wafer bonding: Science and Technology , John Wiley & Sons, Inc .(1999) 22. Lord Rayleigh , ‘ A study of hlass surfaces in optical contact,’ Proc. Phys. Soc. A156,326(1936) 23. 李天錫 , 林澤勝 , 彭成鑑 , 呂冠良 , 潘信宏 , 工業材料雜誌 170期 90年2月 p146-p157 24. Donato Pasquariello and Klas Hjort , Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding, IEEE Journal On Selected Topics In Quantumelectronics,Vol.8,No.1, 118( 2002) 25. P. Kopperschmidt, S. Senz, G. Kastner, D. Hesse, and U. M. Gosele, Appl.Phys.Lett.72, 3181(1998) 26. Ray-Hua Horng, Yi-Chung Lien, Wei-Chih Peng, Dong-Sing Wuu, Chung-Yang Tseng, Chi-Hua Seieh, Man-Fang Huang, Shi-Jen Tsai and Jin-Shiarng Liu, Jpn. J. Appl. Phys.40,2747 (2001) 27. M.Shimbo, K.furukawa, K. Fukuda, and K. Tanzawa, J. Appl. Phys. 60.2987(1986) 28. Q.-Y. Tong,,W. J. Kim, T.-H. Lee, and U. Gösele , Electrochemical and Solid-State Letters, 1, 52 (1998) 29. Y.S. Wu , R.S.Feigelson , R.K.Route , D. Zheng , L.A.Gordon , M. M.Fejer , and R. L. Byer , J.Electrochem.Soc.,Vol145,No.1 (1998) 30. United States Patent , Goesele et al. Patent number 4883215 31. V.Swaminathan, A. T. Macrander, Materials Aspects of GaAs and InP Based Structure , Prentice Hall(1991) 32. Donald A.Neamen , Semiconductor Physics & Devices , McGraw-Hill ,p11(1998) 33. Xinyuan Zhao, Davide Ceresoli, and David Vanderbilt, Physical Review B 71, 085107 (2005) 34. Steven G. Louie, and Marvin L. Cohen, Phy. Rev. B. 13, 2461 (1976) 35. D. R. Hamann, M. Schluter, and C. Chiang Phy. Rev. Lett. 43, 1494 (1979) 36. F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961) 37. O. Krogh Andersen, Phys. Rev. B.12, 3060 (1975) 38. J. L. P. Hughes and J. E. Sipe, Phys. Rev. B 53, 10 751 (1996) 39. J. M. Wills and B. R. Cooper, Phys. Rev. B 36, 3809 (1987) 40. D. L. Price and B. R. Cooper, ibid. 39, 4945 (1989) 41. G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18, 2812 (1978) 42. J. N. Schulman and T. C. McGill, Phys. Rev. Lett. 39, 1680 (1977) 43. J. N. Schulman and Yia-Chung Chang, Phys. Rev. B 24, 4445 (1981) 44. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 45. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 46. Otto F. Sankey and David J. Niklewski, Phys. Rev. B 40, 3979(1989) 47. 江進福, 物理雙月刊, 廿三卷五期, P549-553 48. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. Vol45, 566 (1980) 49. D.M. Bylander, L. Kleinman and S. Lee, Phys Rev. B 42, 1394 (1990). 50. B. Liu, in Report on Workshop "Numerical Algorithms in Chemistry: Algebraic Methods" edited by C. Moler and I. Shavitt (Lawrence Berkley Lab. Univ. of California, 1978), p.49. 51. S. Blügel, PhD Thesis, RWTH Aachen (1988). 52. D. M. Wood and A. Zunger, J. Phys. A, 1343 (1985) 53. P. Pulay, Chem. Phys. Lett. 73, 393 (1980). 54. D. D. Johnson, Phys. Rev. B38, 12 087 (1988) 55. John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 56. J. P. Perdew, in Electronic Structure of Solids ‘91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11. 57. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); 48, 4978(E) (1993). 58. A. D. Becke, J. Chem. Phys. 96, 2155 (1992). 59. E. I. Proynov, E. Ruiz, A. Vela, and D. R. Salahub, Int. J. Quantum Chem. S29, 61 (1995) 60. B. Hammer, K. W. Jacobsen, and J. K. Nørskov, Phys. Rev. Lett. 70, 3971 (1993); B. Hammer and M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995). 61. D. R. Hamann, Phys. Rev. Lett. 76, 660 (1996); P. H. T. Philipsen, G. te Velde, and E. J. Baerends, Chem. Phys. Lett. 226, 583 (1994). 62. A. Zupan, J. P. Perdew, K. Burke, and M. Causá, Int. J. Quantum Chem. (to be published). 63. C. Filippi, D. J. Singh, and C. Umrigar, Phys. Rev. B 50, 14 947 (1994). 64. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B (to appear). 65. M. Levy, Int. J. Quantum Chem. S23, 617 (1989). 66. C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al. (World Scientific, Singapore, 1993). 67. G. Ortiz, Phys. Rev. B 45, 11 328 (1992). 68. C. Bowen, G. Sugiyama, and B. J. Alder, Phys. Rev. B 50, 14 838 (1994); S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75, 689 (1995). 69. The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jürgen Furthmüller 70. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996) 71. G. Kresse and J. Hafner, Phys. Rev. B 47, RC558 (1993) 72. G. Kresse and J. Furthmuller, Comput. Mat. Sci. 6, 15 (1996) 73. D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990) 74. C. G. Bmyden, Math. Comput 19 (155) 577 75. D. D. Johnson, Phys. Rev. B38, 12 087 (1988) 76. P. Pulay, Chem. Phys. Lett. 73 (1980) 393 77. In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271]. 78. B. Fultz and J. M. Howe, Transmission Microscopy and Diffractometry of Materials, second edition. 79. Earl J. Kirkland , Advanced computing in electron microscopy(1998), p133-138 80. JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html 81. 陳力俊 等著,材料電子顯微鏡學,國科會精儀中心 82. P. C. Shieh, C. O. Stanwood and J. M. Howe, Ultramicroscopy, 35, 99 (1991) 83. Ralph W. G. Wyckoff, Crystal Structures (2005) 84. M. L. Mayo and A. K. Ray, Eur. Phys. J. D 33, 413-420 (2005)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/11132-
dc.description.abstract目前對於直接晶圓接合已經有許多研究,在光電元件領域中晶圓接合扮演著一個重要角色。然而,複雜的接合界面對電性會造成嚴重影響,因此,我們利用根據廣義梯度近似(GGA)的VASP(Vienna Ab-initio Simulation Package)程式研究砷化鎵晶圓順相與反相接合界面處的原子結構與電性質。從模擬計算得知,順相與反相接合界面平衡距離分別為2.44Å和2.39Å,此外,我們模擬砷化鎵晶圓接合界面氧化物Ga2O3並藉由multislice方法來探討它的影響在高解析影像。最後,探討模擬的界面氧化物Ga2O3結果並與實驗結果來做比較。zh_TW
dc.description.abstractThere are many investigations for direct wafer bonding, which play an important role in the optoelectronic device filed. However, the interface can have serious influence in the electrical performance. Therefore, we study the atomic structure and electrical property of interface in wafer bonding for in-phase and anti-phase arrangements according to the generalized gradient approximations (GGA) following the VASP (Vienna Ab-initio Simulation Package) code. From the simulations, the equilibrium distance of interface for the in-phase and anti-phase bondings are 2.44Å and 2.39Å respectively. Beside, we simulate the interfacial oxide Ga2O3 between GaAs wafers and discuss its influence on the high resolution image by the multislice method. In the end, the simulation results of interfacial Ga2O3 are discussed and compared with experiment results.en_US
dc.description.tableofcontentsAbstract..............................................i 摘要.................................................ii 總目錄..............................................iii 圖目錄...............................................vi 表目錄.............................................. xi 一、序論..............................................1 1.1 前言 .............................................1 1.2 總能計算模擬簡介.................................2 1.3 模擬計算的優點與應用.............................5 1.4 研究動機.........................................6 二、文獻回顧與理論背景................................8 2.1 晶圓接合背景與模擬計算...........................8 2.1.1 晶圓接合的歷史.................................8 2.1.2 晶圓接合的定義.................................8 2.1.3 晶圓接合種類...................................9 2.1.4 晶圓接合的環境................................10 2.1.5 晶圓接合優點..................................11 2.1.6 砷化鎵晶圓接合之模擬計算......................11 2.2 III-V族化合物半導體.............................12 2.2.1 砷化鎵的歷史..................................12 2.2.2 砷化鎵的結構..................................12 2.2.3 砷化鎵的優點..................................12 2.3 文獻回顧與模擬應用..............................13 2.3.1 初始化分子動力學計算非晶質ZrO2之結構、電性跟介電性 質...................................................13 2.3.2 金屬與半導體界面之電子結構.....................14 2.4 第一原理計算....................................15 2.4.1 第一原理計算簡介..............................15 2.4.2 平面波:虛位勢Pseudopotential method..........17 2.4.3 Muffin-Tin方法................................17 2.4.4 原子軌道......................................17 2.4.5 超晶格的第一原理計算..........................17 2.4.6 理論計算的遠景................................19 2.5 密度泛函理論Density Functional Theory (DFT).....19 2.6 局部密度近似Local Density Functional Approximation (LDA)................................................22 2.7 自洽方法Self-Consistent scheme..................24 2.8 廣義梯度近似Generalized Gradient Approximation (GGA)................................................26 2.9 VASP (Vienna Ab-initio Simulation Package)原理..27 2.10 Multislice method基本理論......................28 2.11 自身交互運算函數Auto-Correlation Function (ACF)................................................32 三、模擬計算與實驗步驟...............................47 3.1 JEMS軟體設定....................................47 3.2 VASP軟體設定....................................48 3.3 Ga2O3超晶格的設定...............................49 3.4 砷化鎵晶圓接合界面之超晶格設定..................50 3.5 ACF操作設定.....................................50 3.6 穿透式電子顯微鏡Transmission Electron Microscopy (TEM)................................................52 3.7 導電原子力顯微鏡Conductive Atomic Force Microscope基本理論.................................................52 四、結果與討論.......................................66 4.1 30顆Ga2O3氧化物.................................66 4.1.1 系統能量與模擬平均溫度........................67 4.1.2 微結構變化....................................67 4.1.3 相轉變的態密度變化............................67 4.1.4 半徑分佈函數Radius Distribution Function (RDF)的變動...................................................69 4.1.5 ACF分析.......................................70 4.1.6 反傅立葉轉換的結構分析........................71 4.1.7 Multislice影像................................72 4.1.8 懸浮鍵對態密度的貢獻..........................72 4.2 120顆Ga2O3氧化物................................73 4.2.1 系統能量與模擬平均溫度........................73 4.2.2 微結構變化....................................74 4.2.3 相轉變的態密度與變化..........................74 4.2.4 半徑分佈函數的變動............................75 4.2.5 ACF分析.......................................76 4.2.6 反傅立葉轉換的結構分析........................76 4.2.7 Multislice影像................................77 4.2.8 懸浮鍵對態密度的貢獻..........................77 4.2.9 模擬與實驗的比較..............................78 4.3 順相與反相砷化鎵晶圓接合界面研究................79 4.3.1 順相與反相接合原子模型........................79 4.3.2 應用總能計算技術決定平衡接合距離..............80 4.3.3 態密度與界面距離關係..........................80 4.3.4 晶圓接合界面能之模擬計算......................81 五、結論............................................136 參考文獻............................................139zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料工程學系所zh_TW
dc.subjectVASPen_US
dc.subject晶圓接合zh_TW
dc.subjectGGAen_US
dc.subjectDFTen_US
dc.subjectLDAen_US
dc.title砷化鎵晶圓接合界面氧化層及其界面性質之第一原理計算zh_TW
dc.titleFirst-Principles Calculations of Interfacial Oxide Layer and Its Properties for Bonded GaAs Wafersen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.