Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11150
標題: 聚(3-羥基丁酸酯)/層狀矽酸鹽奈米複合材料之製備與特性研究
Preparation and characterization of poly(3-hydroxybutyrate)/layered silicate nanocomposites
作者: 張文璟
Chin, Chang-Wen
關鍵字: poly(3-hydroxybutyrate);聚(3-羥基丁酸酯);layered silicate;層狀矽酸鹽
出版社: 材料工程學系所
引用: 1.G. Griffin, London:Chapman and Hall, 48 (1994) 2.洪世淇,Green Technology (2002) 3.李素菁,Global Tech News, 52 (2000) 4.M. Vert, J. Feijen, A. Albertsson, G. Scott, and E. Chiellini, Biodegradable Polymer and Plastics (1992) 5.J. C. Middleton; and A. J. Tipton, 21, 2335 (2000) 6.C. Abe, Y. Nakamura, and Y. Doi, Polymer Communications, 31, 404 (1990) 7.M. H. Choi, and S.C.Yoon, Applied and Environmental Microbiology, 60, 3245 (1994) 8.J. M. Curley, B. Hazer, R. W. Lenz, and R. C. Fuller, Macromolecules, 29, 1762 (1996) 9.K. Fritzsche, R. W. Lenz, R. C. Fuller, Makromol.Chem., 191, 1957 (1997) 10.J. J. Song, and S. C. Yoon, Applied and Environmental Microbiology, 62, 536 (1996) 11.D. C. Lee; and L. W. Jang, Journal of Applied Polymer Science, 61, 1117 (1996) 12.M. Kato; A. Usuki; and A. Okada, Journal of Applied Polymer Science, 66, 1781 (1997) 13.Y. Yang; Z. K. Zhu; J. Yin; X. Y. Wang; and Z.E.Qi, Polymer, 40, 4407 (1999) 14.簡正豐,聚苯乙烯/蒙脫土界面改質對物性影響,中興大學化學 工程研究所碩士論文 (2001) 15.江明峰,聚乳酸/蒙脫土奈米複合材料之製備與物性研究,中興 大學材料工程研究所碩士論文 (2004) 16.T. Anderson, Phil.Mag., 1, 111 (1851) 17.A. L. Mackay; and H. F. W. Taylor, Mineral.Mag.,30,80 (1953) 18.S. Merlino, Mineral.Mag., 52, 377 (1988) 19.尹宗凡,蒙脫土界面改質對對位聚苯乙烯奈米複合材料結晶型態 之研究,義守大學材料工程研究所碩士論文 (2002) 20.葉永城,層狀鈣矽酸鹽Gyrolite及Reyerite之矽接枝反應,國立 清華大學化學系研究所碩士論文 (2004) 21.J. E. Gardolinski, L. C. M Carrera, M. P. Cantão, and F.Wypych, Journal of Materials Science , 35, 3113 (2000) 22.S. T. Lim,Y. H. Hyun, C. H.Lee, and H. J.Choi, Journal of Materials Science Letters, 22, 299 (2003) 23.W. M. Choi, T. W. Kim, O. O. Park, Y. K. Chang, and J. W. Lee, Journal of Applied Polymer Science, 90, 525 (2003) 24.S. Wang, C. Song, G. Chen, T. Guo, J. Liu, B. Zhang, and S. Takeuchi, Polymer Degradation and Stability,87,69 (2005) 25.Lee, W. D., Yoo, E. S., Im, and S. S., Polymer, 44,6617 (2003) 26.金日光、梁幼卿,高分子物理,第二版 (2000) 27.徐崧富,對位聚苯乙烯/蒙脫土奈米複合材料之非等溫結晶行為 研究,義守大學材料所 (2002) 28.L. H. Sperling, Introduction To Physical Polymer Science (3rd), A John Wiley & Sons, Inc., Publication, New York
摘要: 
高分子材料具良好之強度、質輕、價廉、易加工等優點,但傳統石化所生產之高分子材料,在使用後之廢棄物不易分解而產生後續處理上的困難,造成生態環境的負擔,所以開發生物可降解性高分子材料已成為材料開發的主流之一。生物可分解高分子除了可用作一次性塑膠製品,取代一般塑料在消耗性材料的使用,同時,由於具有良好的生物相容性,也可作為藥物釋放材料、醫學衛生用品等醫療方面之材料,具有相當大的潛在應用價值。聚(3-羥基丁酸酯)(poly(3-hydroxybutyrate),PHB)為一種可藉由微生物形成的生物可分解高分子,可經由細菌的解聚作用能夠完全被分解成二氧化碳及水,因此若利用其生物可降解之特性,加入具補強效果之無機材料製備成奈米複合材料,提高材料之特性,增加其應用範圍與價值。
本研究選用具有生物可分解性的聚(3-羥基丁酸酯)[Poly(3-hydroxybutyrate),(PHB)]作為高分子材料,而PHB本身因其高結晶度與高熔點之因素,使得脆性太高、熱穩定性不佳等缺點,致使在加工程序不易控制,因而侷制了PHB廣泛上的用途。因此加入了擁有2D結構的層狀矽酸鹽(layered silicate)分別將以不同的比例添加於PHB中,以溶液插層法(solution intercalation method)製備出PHB/layered silicate奈米複合材料。希望藉由層狀無機材料的添加,來補強複合材料的物理性質,進而改善其原本缺點的不足,形成一具有互補性可生物分解高分子奈米複合材料,以提升其應用範圍及高附加價值。研究中利用適當的界面活性劑(CTAB)將層狀矽酸鹽改質成功後,藉由ATR-FTIR、XRD、TEM、TGA、DMA、POM和DSC對PHB/layered silicate奈米複合材料進行特性分析的探討,而研究的重點則以PHB/layered silicate奈米複合材料之結晶行為、熱性質為主,期望能進一步了解PHB/layered silicate奈米複合材料之微結構型態的形成與控制條件,以利於爾後作為PHB材料開發應用的基礎。在探討結晶行為之等溫結晶分析結果中發現,觀察發現PHB/layered silicate奈米複合材料在各種等溫結晶條件下的完成結晶的時間都比PHB還慢,且也顯示layered silicate的存在會降低PHB/奈米複合材料的結晶速率且隨著layered silicate含量的增加其結晶速率下降的現象則越明顯。在活化能方面,發現PHB/layered silicate奈米複合材料的活化能較PHB的活化能大,即添加layered silicate會使得PHB/layered silicate奈米複合材料之分子鏈晶體堆排時需要較多之能量,顯示layered silicate的存在,限制了PHB分子鏈移動能力,造成PHB分子鏈堆疊排列受阻,導致其結晶活化能增加。另外,PHB/layered silicate之晶體成長方式皆為2-D與3-D空間混合的球狀晶體方式成長。再者,隨著layered silicate含量增加,其表面折疊能皆下降,使分子鏈不易折疊堆排成晶體,即layered silicate的存在會抑制PHB分子鏈運動使之不易堆排,造成分子鏈堆排速度變慢。
在非等溫結晶分析結果中也可得知layered silicate的存在也會限制PHB/layered silicate奈米複合材料分子鏈的堆排、抑制其PHB結晶的成長,使結晶速率降低。

Poly(3-hydroxybutyrate)(PHB) has been produced by many types of micro-organism and is completely biocompatible and biodegradable in the environment by either hydrolytic degradation or enzymatic degradation via a variety of bacteria, resulting in water and carbon dioxide. Therefore, it has a lot of potential applications in the biomedical field and environmentally degradable plastics with the consideration of waste management.
In this study, we have used biodegradable polymer PHB as material due to its Physical properties close to those of isotactic polypropylene, which can be widely processed using conventional processing equipments. However, the brittleness and thermal instability of PHB strongly inhibit its applications. Therefore, the addition of layered silicate into PHB by the solution mixing process may improve its PHB/layered silicate nanocomposites can be characterized by ATR-FTIR, XRD, TEM, TGA, DMA, POM and DSC.
Form the results of isothermal crystallization, the crystallization rate of PHB/layered silicate nanocomposits is lower than that of pure PHB matrix. This behavior becomes more significant as the constent of layered silicate increasea. The activation energy of PHB/layered silicate nanocomposits is higher than that of pure PHB matrix.This result indicates the presence of layered silicates inhibits the transportation of PHB molecular chain. The nucleation and growth mechanism of PHB/layered silicate nanocomposites is the mixture of 2-D and 3-D spherulites.
Form the results of nonisothermal crystallization, the crystallization rate of PHB/layered silicate nanocomposites is also lower than that of PHB matrix. This result is probably due to the limitation of PHB molecular chain motion induced by the presence of layered silicate.
URI: http://hdl.handle.net/11455/11150
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.