Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11162
標題: 添加親水性γ-氧化鋁於陽極觸媒層中改善PEMFC的效能
Performance Improvement in PEMFC by Adding Hydrophilic γ-alumina Particles to the Anode Catalyst Layer
作者: 趙文愷
Chao, Wen-Kai
關鍵字: PEMFC;質子交換膜燃料電池;water management;γ-alumina;anode;水管理;γ-氧化鋁;陽極
出版社: 材料工程學系所
引用: 1. 熊居政,”奈米化白金觸媒在燃料電池之電極材料上佈置方法及電化學測試 之研究” 碩士論文,中國文化大學材料科學與製造研究所,2004 2. 衣寶廉,燃料電池-原理與應用,五南圖書出版社,2005 3. C. Rayment and S. Sherwin, Introduction of Fuel Cell Technology, Department of Aerospace and Mechanical Engineering University of Notre Dame, (2003) 4. J. H. Hirschenhofer, D. E. Stauffer, R. R. Engleman and M. G. Klett, Fuel Cell Handbook 4th Edition, U.S. Department of Commerce, Springfield, VA, (1998) 5. 黃鎮江,燃料電池,全華科技圖書公司,2005 6. C. K. Wong, Fuel Cell, Chichester Harbour Wildfowlers Asociation, (2003) 7. Y. Zhang, X. Huang, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha, Compd., 428, (1-2), 31 (2007) 302 8. J. Larminite, A. Dicks, Fuel Cell System Explained, John Wiley & Sons, Ltd, Chichester, England, (2000) 9. R. Peter, H. G. Dusterwald and B. Hohlein, J. Power Sources, 86 (2000) 507 10. H. P. Chang, C. L. Chou, Y. S. Chen, T. I. Hou and B. J. Weng, Int. J. Hydrog. Energy, In Press, (2007) 11. M. Lina, Y. Cheng, M. Linc and S. Yend, J. Power Sources, 140 (2005) 346 12. Y. Takasu , T. Kawaguchi, W. Sugimoto and Y. Murakami, Electrochimica Acta 48 (2003) 3861 13. G. Chena, A. Delafuente, S. Sarangapani and E. Thomas, Catalysis Today 67 (2001) 341 14. R.Venkataraman, H. R. Kunz and J. M. Fenton, J.Electrochem.Soc.150 (2003) A278 15. Kypng Tae Kim,Young Gul Kim,and Jong Shik Chung ,J. Electrochem. Soc 142 (1995) 1531 16. Y. Yoshikawa, T. Matsuura,M. Kato and M. Hori, J. Power Sources 158 (2006) 143 17. X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao and J. Yu, J. Power Sources 79 (1999) 75 18. X. L. Wang, H. M. Zhang, J. L. Zhang and H. F. Xu, Electrochimica Acta 51 (2006) 4909 19. S. Escribano, J. F. Blachot, J. Eth’eve, A. Morin and R. Mosdale, J. Power Sources 156 (2006) 8 20. Y. H. Pai, J. H. Ke, H. F. Huamg, C. M. Lee, J. M. Zen and F. S. Shieu, J. Power Sources 161 (2006) 275 21. X. Zang and Z. Shen, Fuel 81 (2002) 2199 22. C. Lim and C. Y. Wang, J. Power Sources 113 (2003) 145 23. G. Karimi and X. Li, J. Power Sources 140 (2005) 1 24. X. Ren and S. Gottesfeld, J. Electrochem. Soc. 148 (2001)A87 25. U. Pasaogullari and C. Y. Wang, J. Electrochem. Soc. 151 (2004) A399 26. N. Djilali, D. Lu, Int. J. Therm. Sci. 41 (2002) 29 27. J. Chen, T. Matsuura and M. Hori, J. Power Sources 131 (2004) 155 28. S. Lister and G. McLean, J. Power Sources 130 (2004) 61 29. D. Bevers, R. Rogers and M. Von Bradke, J. Power Sources 63(1996) 193 30. V. A. Pagnian, E. A. Ticianelli and E. R. Gonzalez, J. Appl. Electrochem. 26 (1996) 297 31. L. Giorgi, E. Antolini, A. Pozio and E. Passalacqua, Electrochim. Acta 43 (1998) 3675 32. C. Lim and C. Y. Wang, Electrochem. Acta 49 (2004) 4149 33. D. S. Chan and C. C. Wan, J. Power Sources 50 (1994) 163 34. J. Benziger, J. Nehlsen, D. Blackwell, T. Brenan and J. Itescu, J. Membrane Sci. 261 (2005) 98 35. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan and T. E. Mallouk, J. Phys. Chem. B. 102 (1998) 9997 36. H. Wendt, Electrochim. Acta, 31 (2001) 3637 37. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee and Y. E. Sung, J. Phys. Chem. B, 106 (2002) 1869 38. M. S. Wilson, J. A. Valerio and S. Gottesfeld, Electrochim. Acta 40 (1995) 355 39. G. S. Kimar, M. Raja and S. Parthasarathy, Electrochim. Acta 40 (1995) 285 40. M. S. Willon, U. S. Pat. No.5,234,777 (1993) 41. R. O’Hayre, S. J. Lee, S. W. Cha and F. B. Prinz, J. Power Sources 109 (2002) 483 42. D. Gruber, N. Ponath and J. M”uller, Electrochim. Acta 51 (2005) 701 43. S. Litster and G. McLean, J. Power Sources 130 (2004) 61 44. F. N. Buchi, D. Tran and S. Srinivassan, Proceeding of the First International Symposium on Proton Conducting Membrane Fuel Cells I, the Electrochemical Society, Inc., Pennington, NJ, (1995) p226 45. W. H. Buck, Proceeding of the Power Sources Conference(37th), Army Research Lab., Fort Monmouth, (1996) p104 46. C. Misra, Industrial Alumina Chemicals, ACS Monograph 184, Washington, 1986 47. C.S. John and M. S. Scurrell, The Chem. Soc. 11 (1977) 136 48. V. Gonzalez Pen˜a, I. Dı´az, C. Ma´rquez-Alvarez, E. Sastre and J. Pe´rez-Pariente, Micropor. Mesopor. Mater. 44 (2001) 203 49. B. H. Milosavljevic and J. K. Thomas, J. Phys. Chem. B. 107 (2003) 11907 50. Z. Zhang, R. W. Hicks, T. R. Pauly, and T. J. Pinnavaia, J. Am. Chem. Soc. 124 (2002) 1592 51. Q. Huo, D.I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schu¨ th and G. Stucky, Nature. 368 (1994) 317 52. F. Vaudry, S. Khodabandeh and M.E. Davis, Chem. Mater., 8 (1996)1451 53. M. Yada, M. Ohya, M. Machida and T. Kijima, Chem. Commun., 5 (1998) 1941 54. S. E. Park, R. Ryoo, W. S. Ahn, C. W. Lee and J. S. Chang ,Surf. Sci. Catal., 146 (2003) 213 55. S. Cabrera, J. E. Haskouri, J. Alamo, S. Mendioroz, M. D. Marcos and P. Amorous, Adv.Mater.11 (1999) 379 56. S. A. Bagshaw and T. J. Pinnavaia, Angew. Chem. Int. Ed. Engl. 35 (1996) 1102 57. 林彥伯,”立方型孔洞中孔洞材料MCM-48及中孔碳材的合成” 碩士論文,國立成功大學化學研究所,2004 58. J. J. Lin, C. C. Chu, C. C. Chou and F. S . Shieu, Adv. Mater, 17 (2005) 301 59. A. S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells, 1(2) (2001) 133 60. K. E. Swider and D. R. Rolison, Langmuir, 15(9) (1999) 3302 61. M. Chen and Y. Xing, Langmuir, 21(20) (2005) 9334 62. H. Y. Li, H. Z. Chen, J. Z. Sun, J. Cao, Z. L. Yang and M. Wang, Maxromol Rapid Commun, 24(12) (2003) 715 63. F. Tiarks, K. Landfester and M. Antonietti, Macromol. Chem. Phys. 202(1) (2001) 51 64. S. J. Park, K. S. Cho and S. K. Ryu, Carbon, 41(7) (2003) 1437 65. H. J. Spinelli, Adv Mater, 10(15) (1998) 1215 66. P. Yu, M. Pemberton and P. Plasse, J. Power Sources, 144 (2005) 1 67. Y. H. Pai, J. H. Ke, C. C. Chou, J. J. Lin, J. M. Zen and F. S. Shieu, J. Power Sources, 163 (2006) 398 68. P. Sridhar, R. Perumal, N. Rajalakshmi, M. Raja and K. S. Dhathathretan, J. Power Sources, 101 (2001) 72 69. R. Eckl, W.Zehtner, C. Leu and U. Wagner, J. Power Sources, 138 (2004) 137 70. Y. Qiangu, T. Hossein and W. Junxiao, J. Power Sources, 158 (2006) 316 71. F. B. Weng, A. Su, C. Y. Hsu and C. Y. Lee, J. Power Sources, 157 (2006) 674 72. S.Ge, X. Li and I. M. Hsing, Electrochim. Acta, 50 (2005) 1909. 73. M. Watanabe, H. Uchida and M. Emori, J. Electrochem. Soc., 145 (1998) 1137. 74. S. H. Kwak, T. H. Tang, C. S. Kim and K. H. Yoon, J. Power Sources, 118 (2003) 200. 75. F. Liu, B. Yi, D. Xing, J. Yu, Z. Hou and Y. Fu, J. Power Sources, 124 (2003) 81 76. Z.G.. Shao, P. Joghee and I.M. Hsing, J. Memb. Sci., 229 (2004) 43. 77. B. H. Milosavljevic and J. K. Thomas, J. Phys. Chem. B., 107 (2003) 11907. 78. M. Digne, P. Sautet, P. Raybaud, P. Euzen and H. Toulhoat, J. Catalysis, 211 (2002) 1 79. J. Aguado, J. M. Escola, M. C. Castro and B. Paredes, J. Micropor. Mesopor. Mater., 83 (2005) 181.
摘要: 
近十年來,質子交換膜燃料電池(PEMFC)由於具有高能量密度、高能量轉換效率、操作簡易及零污染等優點,因此被視為最有可能取代現有的化石燃料,作為未來運輸設備、家用設備及可攜式設備的能源供應型態之一。儘管國內外各單位對於燃料電池的投入,使燃料電池得以快速地發展,但膜電極內部的水管理依然需要進一步地改善。
一般而言,水分子於膜電極(MEA)內遷移的驅動力主要為電遷移(electro-osmotic drag)與反擴散(back diffusion),在理想操作狀態下,反擴散與電遷移兩者的合併效應使得水的淨輸送量接近零,然而在實際操作時,兩者往往呈現不平衡的狀態,尤其在高電流密度時電遷移現象更為強烈。此不平衡現象,會使陽極側的質子交換膜由於失水過多而脫水(de-watering)並累積水於流道、氣體擴散層與觸媒層造成陰極產生水氾濫(flooding)現象,進而降低PEMFC的發電效能。
本研究著重於改善陽極於低溼度時因膜脫水造成的效能下降。γ-氧化鋁由於其表面具有路易士酸基(Lewis acid sites),可以吸附水分子的OH-基,因此可作為水分子吸附劑添加於陽極觸媒層中,以維持陽極的溼度。兩種不同比表面積的γ-氧化鋁皆經由溶膠-凝膠法合成,其比表面積分別為152、442 m2/g。利用超音波震盪及印刷技術,製備添加γ-氧化鋁的陽極。由接觸角量測的結果可以發現,隨著γ-氧化鋁添加量的增加,接觸角由136˚開始明顯地下降。從單電池測試的結果可知,添加10wt%的γ-氧化鋁於陽極觸媒層中,於不同的陽極增溼溫度(25℃、35℃、45℃、55℃)下,確實可以有效的提升低溼度條件下的發電效率;然而過量的γ-氧化鋁添加會造成內電阻的提升以及產生陽極水氾濫的現象,進而降低燃料電池的發電效率。

In the past decade, proton exchange membrane fuel cells (PEMFC) have been regarded as a candidate for future power sources for transport, residential and portable applications, primarily due to the advantageous characteristics of high power density, high energy-conversion, simplicity of operation and near-zero pollutant emission. Although many problems of FEMFC have been solved, the management of water molecules inside the membrane electrode assembly (MEA) is still need to be farther improved.
Typically, the main driving forces for transporting the water molecules inside the MEA are back diffusion and electro-osmotic drag. Theoretically, the effect of electro-osmotic drag and back diffusion should reach a balance, but the effect of electro-osmotic drag is stronger than the back diffusion in practice, especially at high current density. This unbalance tends to dry out the anode membrane and water molecules accumulate inside the flow channels, the gas-diffusion layer or the catalyst layer, resulting in flooding at the cathode of the membrane, and thus deteriorate the PEMFC performance. Therefore, management of the water content in MEA is recognized as a key requirement for PEMFC
In this research, γ-alumina is used as a water-absorbent and was added into the anode catalyst layer of MEA, in order to raise the wettability and cell performance at low-humidity condition. Because of the Lewis acid sites on the surface, the hydroxyl groups of water molecules are attracted to the anode to maintain the humidity. The γ-aluminas were synthesized by a sol-gel procedure with BET surface areas of 152、442 m2/g. Anodes with γ-alumina addition were prepared by an ultrasonic and screen-printing technique. The water contact angle (WCA) of the anodes decreases with increasing γ-alumina addition. As can be seen in the results of single cell test, appropriate γ-alumina addition (10wt %) into anode catalyst layer can efficiently enhance the cell performance at low-humidity condition. In contrast, too much γ-alumina addition could increase the inner electrical resistance and cause flooding at anode thus degrading the cell performance.
URI: http://hdl.handle.net/11455/11162
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.