Please use this identifier to cite or link to this item:
標題: 以仿生法製備CaCO3/Mg,Al-hydrotalcite複合結構於鎂合金表面以提升其抗腐蝕性質之研究
A biomimetic approach to develop CaCO3/Mg,Al-hydrotalcite composite layer on Mg alloy to protect from corrosion
作者: 夏靜鈴
Hsia, Ching-Ling
關鍵字: Mg alloy;鎂合金;Corrosion;Calcium Carbonate;腐蝕;碳酸鈣
出版社: 材料工程學系所
引用: 1.D. S. Tawil, Magnesium Technology in Proceedingd of the Conference, (1986) PP.66 2.王木琴, 工程材料, 復文, 台南市, 1996 3.I. J. Polmear, Material Science and Technology, Vol.10 (1994) pp. 1-16 4.陳錦修, 工焰材料, Vol.186 (2002) pp.148 5.B. L. Mordike, and T. Ebert, Mater. Sci. Eng. A, Vol.302 (2001) pp.37 6.J. E. Gary, and B. Luan, J. Alloy Compound, Vol.336 (2002) pp. 88-113 7.C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, Materials Science Engineering A, Vol.325 (2002) pp.344-355 8.C. Shaw and H. Jones, Materials Science Engineering, Vol. A226-228 (1997), pp.856-860 9.J. H. Nordlien, S. One, N. Masuko and K. Nisancioglu, Corrosion Science, Vol.39 (1997) pp.1397 10.M. Avedesian and Hugh Baker, Magnesium and magnesium alloys, ASM Specialty Handbook, (1999) 11.B. Genevieve, B. Christine and P. Nadine, Electrochemical Society Proceedings, Vol.23 (2000) pp.166 12.O. Lunder, T. K. Aune, and K. Nisanciogl, Corrosion, Vol.43 (1987) pp.291 13.A. L. Rudd, C. B. Breslin and F. Mansfeld, Corros. Sci., Vol.42 (2000) pp.275~288 14.D. A. Jones: Principles and Prevention of Corrosion, second edition, Prentice Hall, NJ, 1996 pp.44 15.A. K. Sharma, R. U. Rani, M. Afzar, K.S.N. Acharya, M. Muddu and K. Sumeet, Metal Finishing, Vol.94 (1996) pp.16~27 16.J. Senf, G. Berg, C. Friedrich, E. Broszeit and C. Berger, Magnesium Alloys and Their Applications, eds. B. L. Mordike and K. U. Kainer, International Congress of Magnesium Alloys and Their Applications, Wolfsburg, Germany, Apr. 28-30, 1998, pp. 457~462 17.J. Senf and E. Broszeit, Adv. Eng. Mater., Vol.1 (1999) pp.133-137 18.H. Wentz and L. Ganim, Light Metal Age, Vol.50 (1992) pp.20-21 19.崔福齋, 鄭傳林, 仿生材料, 新文京開發出版股份有限公司, 2006 20.薛郁欣, 溫室效應完全自救手冊,台灣環境保護聯盟 21.Y. T. Clifford and F. B. Chen, AIChE Journal, Vol.44 (1998) pp.1790-1798 22.J. K. Lin, C. L. Hsia and J. Y. Uan, Scripta Materialia, Vol.56 (2007) pp.927-930 23.V. R. L. Constantino, and T.J.Pinnavaia, Inorg. Chem.,Vol.34 (1995) pp. 883-892 24.S. Miyata, and A.Okada, Clays and Clay Miner, Vol.25(1997)pp.14 25.N. Iyi, T. Matsumoto, Y. Kaneko, and K. Kitamura, Chem. Mater. Vol.16 (2004) pp.2926-2932 26.H. Konno, Y. Nanri, M. Kitamura, Powder Technology, Vol.129 (2003) pp.15-21 27.H. Konno, Y. Nanri, and M. Kitamura, Powder Technology, Vol.123 (2002) pp.33-39 28.洪長春, 黃玉棻, 簡國明, 微奈米碳酸鈣, Vol.5 (2004) 29.M. Kitamura, H. Konno, A. Yasui, and H. Masuoka, Journal of Crystal Growth, Vol.236 (2002) pp.323-332 30.M. Kitamura, Journal of Colloid and Interface Science, Vol.236 (2001) pp.318-327 31.W. H. Taft, in:Developments in Sedimentology, Vol.9B,Sds. G.V. Chilingar, H.J.Bissel and R.W.Fairbridge(Elsevier,New york,1967) pp.151-167. 32.Y. Kitano, Bull. Chem. Soc., Japan, Vol.35 (1967) pp.1973 33.H. Roques and A. Girou, Water Research, Vol.8 (1974) pp.907 34.J. W. Murray, J. Geology, Vol.62 (1954) pp.481 35.J. L. Bischoff. and W. S. Fyfe, Am.J.Sci., Vol.266 (1968) pp.65 36.J. L. Bischoff, J Geol.Res., Vol.73 (1968) pp.3315 37.R. M. Pytkowicz, J. Geol., Vol.73 (1965) pp.196 38.K. M. towe and P.G. Malone, Nature, Vol.226 (1970) 348 39.P. Möller, Z. Anal. Chem., Vol.268 (1974) pp.28 40.P. Möller, Z. Physik. Chem. N. F., Vol.89 (1974) pp.80 41.H. Roques, and A. Girou, Water Research, Vol.8 (1974) pp.907-920
由電化學測試顯示,鎂合金AZ91D基材(無碳酸鈣層和Mg,Al-hydrotalcite之鎂合金試片)之腐蝕電位約在-1.45V/Ag/AgCl,腐蝕電流密度約為250μA/cm2;而CaCO3/Mg,Al-hydrotalcite複合結構於鎂合金AZ91D表面之腐蝕電位約在-1.35 V/Ag/AgCl,其腐蝕電流密度約在7.8μA/cm2,除了電化學測試外,也利用鹽水噴霧測試、模擬海水腐蝕試驗及伽凡尼腐蝕測試,其試驗結果顯示,以仿生法製備CaCO3/Mg,Al-hydrotalcite複合結構於鎂合金AZ91D表面,有助於提高鎂合金AZ91D試片的抗腐蝕能力。

This work discussed the corrosion resistance of the CaCO3/Mg,Al-hydrotalcite-coated Mg alloy. The CaCO3/Mg,Al-hydrotalcite composite layer was formed on Mg alloy (AZ91D) by means of biomimetic approach. At first the Mg,Al-hydrotalcite layer was developed on Mg alloy. Afterward, the thick and fast CaCO3 layer was coated on Mg sample, which take advantage of anion-exchangeability of Mg,Al-hydrotalcite by immersing the AZ91D sample in CaCl2 solution. In order to provide the needed CO32- for the formation of CaCO3, CO2 was add into the CaCl2 solution.
The X-Ray diffraction results revealed that a calcium carbonate (CaCO3) layer was coated on the Mg alloy sample surface in 0.1 M CaCl2 solution. The calcium carbonate was calcite phase. The scanning electron microscope (SEM) observation results found that the content of calcium carbonate (CaCO3) increased with increasing of times in 0.1 M CaCl2 solution. The cross-section of samples observation indicated that the calcium carbonate (CaCO3) also was formed on defect and crack areas of the Mg,Al-hydrotalcite layer.
The electrochemical polarization test results showed that the corrosion potential (Ecorr) and current density (Icorr) of the Mg alloy substrate were -1.45 V/Ag/AgCl and 250 μA/cm2. The Ecorr and Icorr of the sample with the CaCO3/Mg,Al-hydrotalcite composite layer were -1.35 V/Ag/AgCl and 7.8 μA/cm2. Several corrosion testing results presented that the sample with the CaCO3/Mg,Al-hydrotalcite composite layer had a much greater corrosion resistance than the sample with the Mg,Al-hydrotalcite layer and the Mg alloy substrate. Therefore the CaCO3/Mg,Al-hydrotalcite composite layer could form on Mg alloy (AZ91D) by biomimetic approach. The composite layer substantially improved the corrosion resistance of the Mg alloy substrate.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.