Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/11175
標題: | 以醇類還原法製備奈米白金膠體粒子及白金/碳黑擔體觸媒之合成參數影響研究 On the effect of process parameters for synthesizing Pt nanoparticles and Pt/C catalysts by alcohol reduction method |
作者: | 王馨如 Wang, Shin-Ru |
關鍵字: | colloids;膠體;platinum catalysts;白金觸媒 | 出版社: | 材料工程學系所 | 引用: | [1] K. Vinodgopal, Y. He, M.Ashokkumar, F. Grieser, “Sonochemically prepared platinum-ruthenium bimetallic nanoparticles”, J. Phys. Chem. B ,110, 3849-3852 (2006). [2] X. Zhong, Y. Feng, I. Lieberwirth, W. Knoll, “Facile synthesis of morphology-controllrd platinum nanocrystals”, J. Am. Chem. Soc, 128, 3-7 (2006) [3] X. Wang, I. M. Hsing, “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymerelectrolyte fuel cells”, Electrochim. Acta, 47 2981-2987 (2002) [4] Z. Tang, D. Geng, G. Lu, “A simple solution-phase reduction method for the synthesis of shape-controlled platinum nanoparticles”, Mater. Lett.59, 1567–1570 (2005) [5]T. Kim, M.Takahashi, M. Nagai, K. Kobayashi, “Preparation and characterization of carbon supported Pt and PtRu alloy catalysts reduced by alcohol for polymer electrolyte fuel cell”, Electrochim. Acta 50, 817– 821 (2004) [6] K. Hiroshima, T. Asaoka, T.Noritake, Y. Ohya, Y.Morimoto, “PEFC cathode alloy catalysts prepared by a novel process using a chelating agent”, Fuel Cells 2, 31-34, (2002) [7] N. Toshima, T. Yonezawa, “Bimetallic nanoparticles-novel materials For chemical and physical applications”, New J. Chem. 22, 1179-1201 (1998) [8]林伸茂, “新能源時代のDMFC直接甲醇燃料電池原理、應用與實作”, 旗標出版股份有限公司, 民95 [9] F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P-Y. Silvert, K. Tekaia- Elhsissen, “Synthesis of Monodisperse Au, Pt, Pd, Ru and Ir Nanoparticles in Ethylene Glycol”, Nanostructured Materials 11, 1277 (1999) [10] S. Komarneni, D. Li, B. Newalkar, H. Katsuki, A. S. Bhalla, “Microwave-polyl process for Pt and Ag nanoparticles”, Langmuir 18, 5959-5962 (2002) [11] E.A. Baranova, C. Bock, D. Ilin, D. Wang, B. MacDougall, “Infraed spectroscopy on size controlled synthesized Pt based nano-catalysts “, Surf. Sci. 600, 3502–3511 (2006) [12] D. G. Duff, B. F. G. Johnson, P. P. Edwards, “Formation of a polymer-protected Platinum sol:A new understanding of the prameters controlling morphology”, J. Phys. Chem. 99, 15934-15944 (1995) [13] C.W. Chen, D. Tano, M. Akashi, “Colloidal platinum nanoparticles stabilized by vinyl polymers with Amide side chains: dispersion stability and catalyst activity in aqueous electrolyte solutions”, J. Colloid Interface Sci. 225, 349-358 (2000) [14] T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition”, J. Phys. Chem. B, 103, 3818-3827 (1999) [15]閻子峰, “奈米催化技術”, 五南書局 (2004) [16] S. J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, “Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres”, J. Am. Chem. Soc. 122, 8581-8582 (2000) [17] C. Pan, K. Pelzer, K. Philippot, B.Chaudret, F. Dassenoy,P. Lecante, M. J. Casanove, “Ligand-Stabilized Ruthenium Nanoparticles: Synthesis, Organization and Dynamics”, J. Am. Chem.Soc., 123, 7584-7593 (2001) [18] D. V. Goia , E. Matijevic, “Preparation of monodispersed metal particles”, New J. Chem. 22, 1203-1215 (1998) [19] M.GOTZ, H. Wendt, “Binary and ternary anode catalysts formulations including the elements W,Si,Mo for PEMFCs operated on methanol or reformate gas”, Electrochim. Acta, 43, 3637-3644 (1998) [20] M. P. Pileni,”Nanosized Particles Made in Colloidal Assemblies”, Langmuir 13, 3266-3276 (1997) [21] M. Li. Wu, L. B. Lai, “Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions”, Colloid Surf. A 244, 149-157 (2004) [22] N. R. Jana, L. Gearheart, C. J. Murphy, “Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles”, Chem. Mat. 13, 2313-2322 (2001) [23] S. Kinge, H. Bönnemann, “One-pot dual size-and shape selective synthesis of tetrahedral Pt nanoparticles”, Appl. Organomet. Chem., 20, 784-787 (2006) [24] C. W. Chen, M. Akashi, “Synthesis ,characterization and catalyst properties of colloidal platinum nanoparticles protected by poly (N-isopropylacrylamide)”, Langumuir 13, 6465-6472 (1997) [25] K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, “Sonochemical preparation and catalyst behavior of highly dispersed palladium nanoparticles on Alumina”, Chem. Mat. 12, 3006-3011 (2000) [26]郭清癸, 黃俊傑, 牟中原, 金屬奈米粒子的製造, 物理雙月刊(二十三 卷六期), 2001年12月 [27] www.jmcatalysts.com [28] D. Radivojevic´, K. Seshan, L. Lefferts, “Preparation of well-dispersed Pt/SiO2 catalysts using low temperature synthesis”, Appl. Catal. A, 301, 51–58 (2006) [29] Y. Verde, G. Alonso, V. Ramos, H. Zhang, A. J. Jacobson, A. Keer, “Pt/C obtained from carbon with different treatments and (NH4)2PtCl6 as a Pt precursor”, Appl. Catal. A, 277, 201-207 (2004) [30] M. Neergat, A. K. Shuala, K.S. Gandhi, “Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells”, J. Appl. Electrochem., 31, 373-378 (2001) [31] M.Y. Lo, I. H. Liao, C. C. Huang, “Key issues in the preparation of DMFC electrocatalysts”, Int. J. Hydrog. Energy 32, 731-735 (2007) [32] Z. Liu, X. Y. Ling, J. Y. Lee, X. Su, L. M. Gan, “Nanosized Pt and PtRu Colloids as precursor for direct methanol fuel cell catalysts”, J.Mater.Chem. 13, 3049-3052 (2003) [33] S.D. Thompson, L.R. Jordan , A.K. Shukla , M. Forsyth, “Platinum electrodeposition from H3Pt(SO3)2OH solutions”, J. Electroanal. Chem. 515, 61–70 (2001) [34] Z.D. Wei, S.H. Chan, “Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation”, J. Electroanal. Chem. 569, 23–33 (2004) [35]吳旻宗, 直接甲醇燃料電池陰極電極觸媒製程之研究 ,中國文化大學材料科學與製造研究所,民92 [36]王奕凱, 邱宏明, 李秉傑 ,” 非均勻系催化原理與應用”, 渤海堂, 民 77 [37]廖怡萱, “質子交換膜燃料電池陰極觸媒合成、鑑定及活性測試”, 元智 大學化學工程學系, 民93 [38] W. X. Chen, J. Y. Lee, Z. Liu, “Microwave-assisted of carbon supported Pt nanoparticles for fuel cell applications”, Chem. Commun. 21, 2588– 2589 (2002) [39] A. B. Olga , R. A Steven, J. W. Kenneth, “Thermal Stability in Air of Pt/C Catalysts and PEM Fuel Cell Catalyst Layers”, Chem. Mat. 18, 1498-1504 (2006) [40]廖聖茹, 黃依蘋, 林仁章, 黃瑞呈, 多孔隙奈米材料比表面積/孔隙度檢測技術, 工業材料雜誌 (190期), 民91年10月 | 摘要: | 本研究利用醇類還原法,以乙醇取代一般常用的乙二醇作為還原劑,將白金前驅物還原成奈米尺度(2~5nm)的白金粒子,並以聚乙烯丙喀烷酮(PVP)作為界面活性劑抑制白金奈米粒子凝聚,另外藉由改變反應溫度(35~95oC)、PVP含量(0.011~0.66g)、乙醇體積分率(0.2~0.9)、及碳黑載體的表面氧化處理等配方與製程參數,探討其對白金奈米粒子在溶液中及披覆在碳黑載體後的分散程度、粒徑所產生的變化,以紫外-可見光光譜儀(UV-visible)、穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、熱重熱差分析儀(TGA/DTA)、傅利葉轉換紅外光譜儀(FT-IR)、比表面積分析儀(BET)等儀器分析觀察。 研究結果發現反應溫度提高有助於溶液中白金粒子的還原速率及其分散性。由TEM結果發現隨著PVP單體/Pt莫耳比值增加時, 白金膠體粒子在溶液中的分散性有明顯的改善,當PVP單體/Pt莫耳比值達40(含)以上時,分散性趨向達到穩定態。XRD結果得知乙醇體積分率改變時會影響白金膠體粒子之晶徑,當在低PVP含量下(PVP單體/Pt莫耳比值為1)時,白金晶徑隨著乙醇體積分率提高而增加,但在較高PVP含量(PVP單體/Pt莫耳比值為40)時,卻呈現相反之趨勢。FTIR-ATR結果發現在高溫下(90oC)提高雙氧水濃度有助於增加碳黑之含氧官能基,並由TEM觀察,有表面改質之碳黑載體可吸附較多白金粒子,且改質後之Pt/C觸媒比表面積也隨之降低(由146 降至 92 m2/g)。當乙醇體積分率為0.8(含)以上之製備條件下, Pt粒子大多可維持在10nm以下並較均勻分布在碳黑載體上,為本研究中較為適宜合成Pt/C觸媒的參數,但仍有許多白金損失,為未來需解決之課題。 The objective of this research is to use ethanol as a reducing agent to replace commonly-used ehthylene glycol in the reduction process of hexachlorplatinic acid into Pt nanoparticles with the presence of polyvinylpyrrolidone (PVP) as a surfactant to prevent the Pt nanoparticles from agglomeration. Dispersion stability and particle size of the Pt nanoparticles in solutions and on carbon blacks were examined by changing the process parameters of reaction temperature (35~95oC), PVP concentration (0.011~0.66g), ethanol fraction (0.2~0.9), and oxidation treatment of carbon blacks by UV-visible,TEM,XRD,TGA/DTA,FT-IR and BET analyses. This research showed that reduction rate and dispersion stability of the Pt nanoparticles in solutions increased with reaction temperature. TEM results indicated that the dispersion of Pt colloidal solution was improved apparently with the increase of the molar ratio of PVP monomeric unit/Pt. When the molar ratio of PVP monomeric unit/Pt was equal to or greater than 40, the dispersion of Pt colloidal solutions seemed to reach a stable state. XRD results showed that the volumetric fraction of ethanol affected grain size of the synthesized Pt. When the molar ratio of PVP monomeric unit/Pt is kept constant at 1, the Pt grain size appeared to increase with the volumetric fraction of ethanol at the low PVP concentration. On the contrary, the Pt grain size reduced with more PVP concentration when the molar ratio of PVP monomeric unit/Pt was 40. From FTIR-ATR analysis, the number of the oxygen surface functional group on carbon blacks was increased by raising the concentration of hydrogen peroxide (H2O2) at high temperature (90 oC). TEM observation revealed that the carbon blacks after surface-oxidation treatment adsorbed more Pt particles. BET surface area of the Pt/C catalysts decreased from 146 to 92 m2/g after the surface oxidation treatment. For the synthesis of Pt/C catalysts with an improved dispersion stability and grain size, use of 0.8 or greater than 0.8 ethanol volumetric fraction in this study appears to attain Pt particles dispersed more uniformly in carbon blacks with a cluster size mostly less than 10nm. But there is still a substantial amount of Pt loss, which remains as a problem needed to be solved in future works. |
URI: | http://hdl.handle.net/11455/11175 |
Appears in Collections: | 材料科學與工程學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.