Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11177
標題: 以射頻磁控濺鍍法於玻璃與PET上製備氧化矽薄膜之表面形貌與潤覆特性研究
The Study on the Morphology and Wetting of the Silicon Oxide Films on Glass and PET by RF Magnetron Sputtering
作者: 袁雪芬
Yuan, Hsueh-Fen
關鍵字: RF Magnetron Sputtering;射頻磁控濺鍍;Silicon Oxide;Wetting;氧化矽;潤覆特性
出版社: 材料工程學系所
引用: 【1】田宏隆,“平面顯示器用可撓式塑膠基材技術與應用”,工業材料雜誌195期,2003.03,第156-162頁。 【2】M.J. Dalby, M.O. Riehle, H. Johnstone, S. Affrossman, A.S.G. Gurtis, “In vitro reaction of endothelial cells to polymer demixed nanotopography”,Biomayerials 23(2002)2945-2954. 【3】徐善慧,“當Nanotech遇到Biotech….” ,工業材料雜誌185期,2002.05,第114-116頁。 【4】R.P.Howson,N. Danson, G.W. Hall, “Reactive magnetron sputtering of silicon to produce silicon oxide”, Nucl. Instr. And Meth. In Phys. Res. B 121(1997)90-95. 【5】劉博文,“ULSI 製程技術” 新文京開發出版股份有限公司,2003,第179-220頁。 【6】Kyung Joong , Jeong Won Kim, Moon-Seung Yang , Jung Hoon Shin, “Oxidation of Si during the growth of SiOx by ion-beam sputter deposition: In situ x-ray photoelectron spectroscopy as a function of oxygen partial pressure and deposition temperature”, Physical review B 74(2006)153305. 【7】Jin-Woo Han, Hee-Jin Kang, Jong-Hwan Kim, Dae-Shik Seo, “Effects of Defects in SiO2 Thin Films Prepared on Polyethylene Terephthalate by High-Temperature E-beam Deposition” Jpn. Appl. Phys.,Vol. 45, No. 31(2006)L827-L829. 【8】B. Q. Li, I. Kojima, J. M. Zuo, “Surface evolution of ultrahigh vacuum magnetron sputter deposited amorphous SiO2 thin films”, J. Appl. Phys., Vol. 91, No. 7, 1 April 2002, p4082-4089. 【9】H. Miyazaki, T. Goto,“SiOx films prepared using RF magnetron sputtering with a SiO target” , Journal of Non-Crystalline Solids 352(2006)329-333. 【10】黃承揚、朱正煒,“以磁控濺射法濺鍍二氧化矽薄膜表面粒徑之研究” , 工業材料雜誌209期,2004,第113-121頁。 【11】D.S. Wuu, W.C. Lo, C.C. Chiang, H.B. Lin, L.S. Chang, R.H. Horng, C.L. Huang , Y.J. Gao, “Plasms-deposited silicon oxide barrier films on polyethersulfon substrate: temperature and thickness effects” Surface & Coating Technology 197(2005) 253-259. 【12】A.S. da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J. E. Klemberg-Sapieha, M. R. Wertheimbr,“Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition” J. Vac Sci. Technol. A 16(6), Nov/Dec 1998, p3190-3198. 【13】V. Belot, R.J.P. Corriu, D. Leclercq, P. Lefrvre, P.H. Mutin, A. Vioux, “Sol-gel route to silicon suboxides. Preparation and characterization of silicon sesquioxide”, Journal of Non-Crystalline Solids 127 (1991)207-214. 【14】施敏,“半導體元件物理與製作技術” ,國立交通大學出版社,2002,第555-574頁。 【15】羅吉宗,“薄膜科技與應用” ,全華科技,2004。 【16】Alfred Grill,“Cold Plasma in Materials Fabrication”, The Institute of Electrical and Electrical and Electronics Engineers, Inc., New York. 【17】W. D. Westwood, “Reactive Sputter Deposition- Handbook of Plasma Processing Technology”, Springer-Verlag Berlin Heidelberg, U.S.A., 1992. 【18】M. Ohring,“The Materials Science of Thin Films”, Academic Press, New Jersey, 1992 【19】James M. Howe,“Interface in materials” ,A wiley-interscience, New York. 【20】John A. Thornton, J. Vac. Sci. Technol. A4(6),1986,p3059-3065 【21】N. Danson, I. Safi, G. W. Hall, R. D. Howson, “Techniques for the sputtering of optimum indium-tin oxide films on to room temperature substrates”, Surf. Coat. Technol. 99 (1998) 147-160 【22】楊志茂,“表面型態特性對固體材料表面能影響之探討”,國立中興大學機械工程所碩士論文,2004。 【23】張益新,“銅製程矽晶片上ZnO薄膜合成之研究”,國立成功大學材料科學及工程所碩士論文,1999。 【24】陳建人等著,“真空技術與應用”,行政院國家科學委員會精密儀器發展中心,2001。 【25】汪建民主編,“材料分析”,中國材料科學學會,2005。 【26】李玉郎,“表面世界的探索-表面分析技術”化工技術12卷第9期,2004.09,第123-133頁。 【27】 廖駿偉,蕭祝螽,陳蔚宗,“OES技術於電漿製程監測之應用”,工業材料雜誌 213期,2004.09,第171-176頁。 【28】B.A. Movchan and A.V. Demchishin, “Structure and properities of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide”, Phy. Met. Metallogr., 28(4)(1969) 83-91. 【29】唐偉忠,“薄膜材料製備原理、技術及應用”,北京冶金工業,1998。 【30】郭家維,“超高真空濺鍍沉積Ta2O5薄膜電容元件的製備”,逢甲大學半導體與光電產業研發碩士論文,2006。 【31】J. s. Chen, Z. Sun, P. S. Guo, Z. B. Zhang, D. Z. Zhu, and H. J. Xu, “Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene”, J. Appl. Phys., Vol. 93, No. 9, 1 May 2003, p5103-5108. 【32】P. Zhang, B.K. Tay, G.Q. Yu, S.P. Lau, Y.Q. Fu, “Surface energy of metal containing amorphous carbon films deposited by filtered cathodic vacuum arc”, Diamond and Related Materials 13(2004) 459-464. 【33】A. Kinbara, T. Hayashi, K. Wakahara, N. Kikuchi, E. Kusano, H. Nanto, “Polyimide-based organic thin films prepared by rf magnetron sputtering”, Thin Solid Films 433(2003) 274-276.
摘要: 
氧化矽薄膜由於有好的光穿透性、熱穩定性、耐熱性質佳、化學惰性、電絕緣性、擴散阻絕性及對人體無害,廣泛的被應用在電子、光電、食品包裝等方面。由於應用範圍廣泛,因此有許多製造氧化矽薄膜的方法。沉積用的基板也因使用的地方而有所不同。雖然有許多製造氧化矽薄膜的相關文獻,但對於鍍在二種不同基材上的討論仍付之闕如。
本研究使用射頻磁控濺鍍法製備氧化矽薄膜於玻璃與PET兩種不同基材上。改變製程兩參數—濺鍍功率與工作壓力,來探討這些參數對於不同基材上薄膜之表面形貌、微觀結構、成分分析及潤覆特性的影響。
實驗結果發現,濺鍍功率的改變對微觀結構的影響較為明顯。在低功率時,PET試片上氧化矽薄膜的成長較玻璃試片來的鬆散有較多的縫隙。推測這是受到試片表面能的影響。接觸角量測的結果最小值皆落在功率為200 W時,PET試片為6.3°,玻璃為8.6°。隨著工作壓力的改變,在PET與玻璃試片上的氧化矽薄膜之微觀結構皆沒有明顯的變化。而兩鍍膜後基材之接觸角的量測值皆隨著工作壓力的增加而降低且最小值皆落在工作壓力為6 mTorr時。鍍膜後的PET試片角度為0°,而玻璃試片則為3.7°。套用本研究所提出的簡單模型,發現計算出來的角度在功率改變時與我們量測到的接觸角趨勢符合。在工作壓力的改變下,則與量測的情況有差異。推測應是表面能造成的影響。

The SiOx film has good optical transparent, thermal stability, thermal conductivity, chemical inertness, electric insulate, diffuse insulate and harmless to human. Therefore, it is widely used in electric, photoelectric and food packing industries. There are different methods to prepare SiOx film, and different substrates in various applications. Though there are many publications concerning the preparation of SiOx films, much less evidence in comparison of SiOx films on two different kinds of substrates has been given.
In this study, SiOx films were deposited on PET and glass substrates by means of Radio frequency (RF) magnetron sputtering. Process parameters including RF power and working pressure were varied. The effects of these parameters on the morphology, microstructure, composition and wetting were discussed.
The results showed that the RF power has an obvious effect. At lower RF power, more voids are observed in the SiOx films deposited on PET rather than glass due to the different surface energy. The contact angle is the lowest at the power of 200 W for both PET and glass samples. It is 6.3 for PET samples and 8.6 for glass sample, respectively. As the working pressure change, the microstructure of SiOx films on PET and glass substrates does not change much. However, the contact angle decreases as the working pressure increases. The lowest value is 0 for PET substrates and 3.7 for glass at working pressure of 6 mTorr. With a simple model proposed in this study, the contact angles we calculated agree well with those measured values in dependence of the RF power. On the contrary, the calculated values do not fit those measured values in relation to the working pressure. The surface energy may affect the final result.
URI: http://hdl.handle.net/11455/11177
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.