Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11190
標題: 聚羥基丁酸酯/層狀雙氫氧化合物奈米複合材料之結晶行為與熱裂解特性
Crystallization and Thermal Degradation Behaviors of Poly(3-Hydroxybutyrate)/Layered Double Hydroxide Nanocomposites.
作者: 徐崧富
Hsu, Sung-Fu
關鍵字: PHB;聚羥基丁酸酯;LDH;crystallization behavior;thermal degradation;層狀雙氫氧化合物;結晶行為;熱裂解
出版社: 材料工程學系所
引用: 1. Doi, Y. Microbial polyesters, VCH Publishers, New York, 1990. 2. Ishida, H.; Campbell, S.; Blackwell J. Chem Mater 2000, 12, 1260. 3. Ray, S. S.; Okamoto, M. Prog Polym Sci 2003, 28, 1539. 4. Alexandre, M.; Dubois, P. Mater Sci Eng 2000, 28, 1. 5. Ray, S. S.; Bousmina M. Prog Mater Sci 2005, 50, 962. 6. Leroux, F.; Besse, J. P. Chem Mater 2001, 13, 3507. 7. Lee, S. Y. Biotechno Bioeng 1996, 49, 1. 8. Arkin, A. H.; Hazer, B. Biomacromolecules 2002, 3, 1327. 9. Horowitz, D. M.; Clauss, J.; Hunter, B. K.; Sanders, J. K. M. Nature 1993, 363, 23. 10. Kurcok, P.; Kowalczuk, M.; Hennek, K.; Jedlinski, Z. Macromolecules 1992, 25, 2017. 11. Jedliński, Z.; Kurcok, P.; Lenz, R. W. J Macromol Sci Part A: Pure Appl Chem 1995, 32, 797. 12. Abe, H.; Matsubara, I.; Doi, Y. Macromolecules 1995, 28, 844. 13. Chen, C.; Fei, B.; Peng, S.; Zhuang, Y.; Dong, L.; Feng, Z. Eur Polym J 2002, 38, 1663. 14. Hobbs, J. K.; McMaster, T. J.; Miles, M. J. Polymer 1996, 37, 3241. 15. Ha, C. S.; Cho, W. J. Prog Polym Sci 2002, 27, 759. 16. Avella, M.; Martuscelli, Z. Polymer 1988, 29, 1731. 17. Avella, M.; Martuscelli, Z.; Raimo, M. Polymer 1993, 34, 3234. 18. Chee, M. J. K.; Ismail, J.; Kummerlöwe, C. Polymer 2002, 43, 1235. 19. Chan, C. H.; Kummerlöwe, C.; Kammer, H. W. Macromol Chem Phys 2004, 205, 664. 20. Wong, S.; Shanks, R.; Hodzic, A. Comp Sci Techno 2004, 64, 1321. 21. Gardolinski, J. E.; Carrera, L. C.; Cantao, M. P.; Wypych, F. J Mater Sci 2000, 35, 3113. 22. Lim, S. T.; Hyun, Y. H.; Lee, C. H.; Choi, H. J. J Mater Sci Lett 2003, 22, 299. 23. Choi, W. M.; Kim, T. W.; Park, O. O.; Chang, Y. K.; Lee, J. W. J Appl Polym Sci 2003, 90, 525. 24. Chen, G. X.; Hao, G. J.; Guo, T. Y.; Song, M. D.; Zhang, B. H. J Appl Polym Sci 2004, 93, 655. 25. Wang, S.; Song, C.; Chen, G.; Guo, T.; Liu, J.; Zhang, B.; Takeuchi, S. Polym Degrad Stab 2005, 87, 69. 26. Liao, C. S.; Ye, W. B. J Polym Res 2003, 10, 241. 27. Liao, C. S.; Ye, W. B. Mater Chem Phys 2004, 88, 84. 28. Desigaux, L.; Belkacem, M. B.; Richard, P.; Cellier, J.; Leone, P.; Cario, L.; Leroux, F.; Taviot-Gueho, C.; Pitard, B. Nano Lett 2006, 6, 199. 29. Del Arco, M.; Cebadera, E.; Gutierrez, S.; Martin, C.; Montero, M. J.; Rives, V.; Rocha, J.; Sevilla, M. A. J Pharm Sci 2004, 93, 1649. 30. Rives, V.; Ulibarri, M. A. Coord Chem Rev 1999, 181, 61. 31. Newman, S. P.; Jones W. New J Chem 1998, 22, 105. 32. Vaccari, A. Appl Clay Sci 1999, 14, 161. 33. You, Y.; Zhao, H.; Vance, G. F. J Mater Chem 2002, 12, 907. 34. Choy, J. H.; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Angew Chem Int Ed 2000, 39, 4042. 35. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J.; Portier, J. J Am Chem Soc 1999, 121, 1399. 36. Kwak, S. Y.; Jeong, Y. J.; Park, J. S.; Choy, J. H. Sol Stat Ion 2002, 151, 229. 37. Zammarano, M.; Bellayer, S.; Gilman, J. W.; Franceschi, M.; Beyer, F. L.; Harris, R. H.; Meriani, S. Polymer 2006, 47, 652. 38. Chen, W.; Qu, B. Chem Mater 2003, 15, 3208. 39. Hsueh, H. B.; Chen, C. Y. Polymer 2003, 44, 1151. 40. Du, L.; Qu, B.; Meng, Y. ; Zhu Q. Comp Sci Techno 2006, 66, 913. 41. Avrami, M. J Chem Phys 1940, 8, 212. 42. Hoffman, J. D.; Weeks, J. J. J Res Nat Bur Stand 1962, 66A, 13. 43. Hoffman, J. D.; Weeks, J. J. J Chem Phys 1962, 37, 1723. 44. Hoffman, J. D. Polymer 1983, 24, 3. 45. Lauritzen, J. I. J Appl Phys 1973, 44, 4353. 46. Lauritzen, J. I.; Hoffman, J. D. J Appl Phys 1973, 44, 4340. 47. Roitman, D. B.; Marand, H.; Miller, R. L.; Hoffman, J. D. J Phys Chem 1989, 93, 6929. 48. Lovinger, A. J.; Davis, D. D.; Padden, F. J. Polymer 1985, 26, 1595. 49. Barham, P.J.; Keller, A.; Otun, E. L. J Mater Sci 1984, 19, 2781. 50. Pearce, R.; Brown, G. R.; Marchessault, R. H. Polymer 1994, 35, 3984. 51. Xing, P.; Dong, L.; An, Y.; Feng, Z. Macromolecules 1997, 30, 2726. 52. Greco, P.; Martuscelli, E. Polymer 1989, 30, 1475. 53. Weihua, K.; He, Y.; Asakawa, N.; Inoue, Y. J Appl Polym Sci 2004, 94, 2466. 54. Gunaratne, L. M. W. K.; Shanks R. A. J Polym Sci Part B: Polym Phys 2006, 44, 70. 55. Nakamuna, K.; Katayama, K.; Amano, T. J. Appl. Polym. Sci., 1973, 17, 1031. 56. Nakamuna, K.; Watanaba, T.; Katayama, K.; Amano, T. J Appl Polym Sci 1972, 16, 1077. 57. Cebe, P.; Hong, S. D. Polymer, 1986, 27, 1183. 58. Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Polym. Eng. Sci., 1997, 37, 568. 59. Hu, X.; Lesser A. J. Macromol Chem Phys 2004, 205, 574. 60. Cebe, P.; Hong, S. D. Polym Comp 1988, 9, 271. 61. Jeziorny, A. Polymer, 1978, 19, 1142. 62. Kissinger, H. E. J Res Natl Bur Stand 1956, 57, 217. 63. Kissinger, H. E. Anal Chem 1957, 11, 1702. 64. Gunaratne, L. M. W. K.; Shanks, R. A.; Amarasinghe, G. Thermochim Acta 2004, 423, 127. 65. Chanprateep, S.; Kikuya, K.; Shimizu, H.; Seki, S.; Tagawa, S.; Shioya, S. J Chem Eng Jap 2003, 36, 639. 66. Supaphol, P.; Apiwanthanakorn, N. J Polym Sci Part B: Polym Phys 2004, 42, 4151. 67. An, Y.; Dong, L.; Mo, Z.; Liu, T.; Feng, Z. J Polym Sci B: Polym Phys 1998, 36, 1305. 68. Ziaee, Z.; Supaphol, P. Polymer Testing 2006, 25, 807. 69. Reinsch, V. E.; Kelley S. S. J Appl Polym Sci 1997, 64, 1785. 70. Wu, T. M.; Chvalun, S. N.; Blackwell, J. Macromolecules 1995, 28, 7349. 71. Wu, T. M.; Blackwell, J. Macromolecules 1996, 29, 5621. 72. Wu, T. M.; Hsu S. F.; Wu, J. Y. J Polym Sci Part B: Polym Phys 2002, 40, 736. 73. Wu, T. M.; Hsu S. F.; Wu, J. Y. Polym Eng Sci 2002, 42, 2295. 74. Morikawa, H.; Marchessalut, R. H. Can. J. Chem. 1981, 59, 2306. 75. Kopinke, F. D.; Remmler, M.; Mackenzie, K. Polym Degrad Stab 1996, 52, 25. 76. Lehrle, R.; Williams, R.; French, C.; Hammond, T. Macromolecules 1995, 28, 4408. 77. Grassie, N.; Murray, E. J. Polym Degrad Stab 1984, 6, 47. 78. Grassie, N.; Murray, E. J. Polym Degrad Stab 1984, 6, 95. 79. Grassie, N.; Murray, E. J. Polym Degrad Stab 1984, 6, 127. 80. Kunioka, M.; Doi, Y. Macromolecules 1990, 23, 1933. 81. Cyras, V. P.; Vázquez, A.; Rozsa, CH.; Fernández, N. G.; Torre, L.; Kenny J. M. J Appl Polym Sci 2000, 77, 2889. 82. Gonzalez, A.; Irusta, L.; Fernandez-Berridi, M. J.; Iriarte, M.; Iruin, J. J. Polym Degrad Stab 2005, 87, 347. 83. Csomorova, K.; Rychly, J.; Bakos, D.; Janigova, I. Polym Degrad Stab 1994, 43, 441. 84. Hoffmann, A.; Kreuzberger, S.; Hinrichsen, G. Polym Bull 1994, 33, 355. 85. El-Hadi, A.; Schnabel, R.; Straube, E.; Müller G.; Riemschneider, M. Macromol Mater Eng 2002, 287, 363. 86. Janigová, I.; Lacík, I.; Chodák, I. Polym Degrad Stab 2002, 77, 35. 87. Zagar, E.; Krzan, A. Biomacromolecules 2004, 5, 628. 88. Yu, G.; Marchessault R. H. Polymer 2000, 41, 1087. 89. Liao, C. S.; Ye, W. B. Electrochimica Acta 2004, 49, 4993. 90. Nandan, B.; Chen, H. L.; Liao, C. S.; Chen, S. A. Macromolecules 2004, 37, 9561. 91. Wilson Jr., O.C.; Olorunyolemi, T.; Jaworski, A.; Borum, L.; Young, D.; Siriwat, A.; Dickens, E.; Oriakhi, C.; Lerner, M. Appl Clay Sci 1999, 15, 265. 92. Li, F.; Zhang, L.; Evans, D. G.; Forano, C.; Duan, X. Thermochim Acta 2004, 424, 15. 93. Yang, W.; Kim, Y.; Liu, P. K. T.; Sahimia, M.; Tsotsis, T. T. Chem Eng Sci 2002, 57, 2945. 94. Alamo, R. G.; Mandelkern, L. Macromolecules 1991, 24, 6480. 95. Huang, J. W.; Kang, C. C.; Chen, T. H. J Appl Polym Sci 2005, 97, 1051. 96. Jimenez, C. G.; Ogata, N.; Kawai, H.; Ogihara, T. J Appl Polym Sci 1997, 64, 2211. 97. Akhtar, S.; Pouton, C. W.; Notarianni, L. J. Polymer 1992, 33, 117. 98. Barham, P. J. J Mater Sci 1984, 19, 3826. 99. Supaphol, P.; Spruiell, J. E. Polymer 2001, 42, 699. 100. Erceg, M.; Kovačić, T.; Klarić, I. Polym Degrad Stab 2005, 90, 86. 101. Aoyagi, Y.; Yamashita, K.; Doi, Y. Polym Degrad Stab 2002, 76, 53. 102. Klarić, I.; Roje, U.; Stipanelov, N. J Appl Polym Sci 1999, 71, 833. 103. Hsueh, H. B.; Chen, C. Y. Polymer 2003, 44, 5275. 104. Li, B.; Hu, Y.; Liu J.; Chen, Z.; Fan, W. Colloid Polym Sci 2003, 281, 998. 105. Du, L.; Qu, B. J Mater Chem 2006, 16, 1549. 106. Qiu, L.; Qu, B. J Coll Interface Sci 2006, 301, 347. 107. Lee, W. D.; Im, S. S. J Polym Sci Part B: Polym Phys 2007, 45, 28. 108. Lee, W. D.; Im, S. S.; Lim, H. M.; Kim, K. J. Polymer 2006, 47, 1364. 109. Mangiacapra, P.; Raimondo, M.; Tammaro, L.; Vittoria, V. Biomacromolecules 2007, 8, 773. 110. Pucciariello, R.; Tammaro, L.; Villani, V.; Vittoria V. J Polym Sci Part B: Polym Phys 2007, 45, 945. 111. Wang, Y.; Gao, J.; Ma, Y.; Agarwal, U. S. Composites: Part B 2006, 37, 399. 112. Abe, H.; Doi, Y.; Macromolecules 1998, 31, 1791. 113. Chiu, H. J.; Shu, W. J. J Polym Res 2005, 12, 149. 114. Chiu, H. J.; Chen, H. L.; Lin, T. L. ; Lin J. S. Macromolecules 1999, 32, 4969.
摘要: 
本研究以生物可分解性高分子材料聚羥基丁酸酯(poly(3-hydroxybutyrate), PHB)與經具磷酸根陰離子之聚氧化乙烯寡聚物(ω-methoxy poly(ethylene oxide) phosphates, PEOPA)表面改質處理之層狀雙氫氧化合物(layered double hydroxides, LDH),藉由溶液混合方式將PHB與改質LDH(PMLDH)製備成PHB/PMLDH奈米複合材料。研究中以有機-無機組成間之相互關係,分析PHB/PMLDH奈米複合材料之性質表現,並探討無機層狀材料LDH的存在與含量多寡對於PHB高分子之結晶行為與熱裂解特性,並以動力學理論模式進行分析研究。
在X光繞射分析儀(XRD)與穿透式電子顯微鏡(TEM)所得結果顯示,PMLDH於PHB基材中有良好的分散情形,所製備為剝離型高分子奈米複合材料。由動態機械分析儀(DMA)測量材料的機械性質表現,結果顯示PHB高分子在添加2 wt % PMLDH後儲存模數可提升88 %。但在傅氏紅外線光譜儀(FT-IR)與熱重分析儀(TGA)的量測結果顯示,可能由於PMLDH於高溫環境下會產生脫氫反應,並與PHB分子鏈可能產生直接的作用,造成高分子的熱裂解路徑產生改變,因而使PHB高分子材料的耐熱性質隨著PMLDH含量的增加而產生降低的情形。
在PHB高分子結晶行為與動力學探討方面,以示差掃描熱量計(DSC)與偏光顯微鏡(POM)進行分析。在等溫與非等溫熔融結晶結果方面,添加2 wt % PMLDH於PHB基材中可增加異質成核進而促進結晶成長,使材料的結晶速率增加,結晶活化能下降。而在添加更高含量的PMLDH時,雖然可增加高分子異質成核的產生,但較多的PMLDH的存在可能使得高分子鏈的擴散上造成較多的空間限制,造成PHB高分子的分子鏈傳輸能力下降,而使結晶成長速率降低,結晶活化能的增加。此外PHB與PHB/PMLDH奈米複合材料的非等溫結晶過程中,較高的降溫速率下會產生雙熔融峰情形,主要是由於升溫過程中的再結晶所造成。較高的降溫速率以及PMLDH的加入會增加PHB構造中的缺陷,其可能妨礙分子鏈的排列,而使分子鏈結晶排列的完美性下降,導致結晶的順晶扭曲程度增加與結晶尺寸降低。而在PHB非等溫冷結晶行為結果顯示,PMLDH的存在可能於基材中產生熱阻絕的影響,使分子鏈在快速冷卻過程中有較多的時間來形成較多的具預先的均質成核特性之活性化核點,冷結晶溫度因而隨著PMLDH含量的增加而下降。而PMLDH層板的存在造成基材中的空間障礙,限制了分子鏈的運動,造成PHB非等溫冷結晶活化能隨著PMLDH含量的增加而增加。
在PHB高分子裂解行為行為與動力學研究方面,由熱重分析儀(TGA)所得之分析結果顯示,藉由自催化反應模式能夠來描述與說明PHB高分子的裂解行為與機制。在PHB/PMLDH奈米複合材料中,PMLDH的加入於高溫環境下可能與PHB分子鏈產生直接的作用而造成PHB的熱裂解行為與機制產生改變,使高分子基材的裂解速率隨著PMLDH含量增加而明顯增加。凝膠滲透層析儀(GPC)與分子量量測儀結果顯示,高溫預熔處理對於PHB分子量產生相當大的影響。隨著預熔溫度或時間的增加,PHB分子鏈長因裂解而產生明顯下降,使得高分子的結晶較不易形成,而造成結晶與熔融溫度的下降。小角度X光散射儀(SAXS)結果顯示PHB分子量的下降造成結晶晶板厚度與結晶長週期有下降的趨勢。PMLDH的存在會加速PHB高分子的熱裂解反應速率,造成PHB/PMLDH奈米複合材料中高分子的結晶與熔融行為受分子量的影響更加顯著。

Poly(3-hydroxybutyrate) (PHB)/layered double hydroxides (LDHs) nanocomposites were successfully prepared by mixing PHB and ω-methoxy poly(ethylene oxide) phosphates, PEOPA)-modified LDH (PMLDH) in chloroform solution. Effects of PMLDH contents on the crystallization and degradation behaviors of PHB/PMLDH nanocomposites were discussed. Both X-ray diffraction data and TEM micrographs of PHB/PMLDH nanocomposites indicate that the PMLDHs are randomly dispersed and well distributed into the PHB matrix. Mechanical properties of the fabricated nanocomposites measured by DMA show significant improvements in the storage modulus when compared with that of pure PHB.
The crystallization behaviors and kinetics of PHB and PHB/PMLDH nanocomposites were investigated using DSC and POM. Both isothermal and nonisothermal melt-crystallization results show that the addition of 2 wt % PMLDH into PHB induced more heterogeneous nucleation in the crystallization that significantly increases the crystallization rate and reduces their activation energy. By adding more PMLDH into the PHB probably causes more steric hindrance that reducing the transportation ability of polymer chains during crystallization, thus increasing the activation energy. During the nonisothermal melt-crystallization process, double melting peaks are observed both for pure PHB and PHB/PMLDH nanocomposites at higher cooling rates, which are caused by melting-recrystallization-melting behavior during the heating process. Additionally, the amount of conformational defects of PHB crystallites was increased with a faster cooling rate or in the presence of PMLDH. These defects probably hindered the polymer chain arrangement, resulting in an increased paracrystalline distortion and a decreased in the correlation length. The nonisothermal cold-crystallization kinetics of PHB/PMLDH nanocomposites from glassy states was also performed. Comparison of the crystallization rate parameters obtained for both melt- and cold-crystallization processes indicated the crystallization from the glassy state is higher than that from the molten state at the same rate. For the nonisothermal cold-crystallization, the incorporation of PMLDH into PHB probably favors more activated nuclei formed during the quenching process and then reduces the crystallization temperature of polymer. But at the same time, the well dispersed PMLDH also probably hinders the transport ability of polymer chain segments during crystallization and the nonisothermal cold-crystallization activation energy increases with increasing PMLDH content.
Isothermal degradation of PHB/PMLDH nanocomposites was investigated by using TGA in the temperature range of 190-210℃ under nitrogen atmosphere. The autocatalytic kinetic model is proposed to describe the degradation process of PHB polymer and represented well with the experimental results. This result suggests that the degradation mechanism of PHB not only involved the random chain scission at ester groups, but also induced a catalytic action of the chain-scission products. Partial dehydroxylation of PMLDH was observed at temperature below 190℃ by FT-IR, and thus may lead to the interaction with the ester group of PHB. Those results suggested that the degradation route of polymer in PHB/PMLDH nanocomposites involved the degradation mechanism of original PHB and the catalytic effect of PMLDH, thus leads to an increase in the degradation rate of matrix.
The crystallization behaviors of PHB/PMLDH nanocomposites were explored as the thermal treatment with a function of the pre-melting temperatures and times. From molecular weight measurement results show that the molecular weight of PHB decreases rapidly with increasing the pre-melting temperature and time, which results in the crystallization and melting temperature decreases. The lamellar thickness and long period of polymer crystallization results also revealed decreases with increasing the pre-melting temperature and time in the SAXS experiment. The molecular weight of PHB seriously reduces as adding PMLDH to polymer matrix. Therefore the effect of molecular weight in PHB/PMLDH nanocomposites is more observably on the crystallization and melting behaviors than pure PHB.
URI: http://hdl.handle.net/11455/11190
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.