Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11198
標題: 合金元素添加對機械合金法研製Sm2Co17合金粉末磁性與微結構之影響
Effects of additive elements on the magnetic properties and microstructure of mechanically alloying Sm2Co17 magnets
作者: 張萬屹
Chang, Wan-Yi
關鍵字: milling;機械合金;coercivity;Sm2Co17;永磁材料;釤鈷;稀土
出版社: 材料工程學系所
引用: 1. 周壽增、董清飛,超強永磁體-稀土鐵系永磁材料,北京:冶金工業出版社,2004年2月。 2. J. Hall, A. Fenocchi and Mr. Eternad, 13th Int. Workshop on RE Magnets & their Applicatioons, 329 (1994) 3. E. A. Nesbitt, J. H. Wernick and E. Corenzwit, J. Appl. Phys., 30 (1959) 365. 4. W. M. Hubbard, E. Adams and J. V. Gilfrich, J. Appl. Phys., 31 (1960) 368. 5. G. Hoffer and K. Strnat, IEEE Trans. Magn., 2 (1966) 487. 6. K. J. Strnat, Cobalt, 36 (1967) 133. 7. K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys., 38 (1967) 1001. 8. Buschow, K H J.wok A.S. van der Goot, Acta Crystallogr. B27 (1971) 9. E. A. Nesbitt et al., Appl. Phys. Lett., 12 (1968) 361. 10. D. K. Das, IEEE Trans. Magn., 5 (1969) 214. 11. M. G. Benz et al., Appl. Phys. Lett., 17 (1970) 176. 12. D. L. Martin et al., Cobalt, 11 (1971). 13. A. E. Clark et al., Appl. Phys. Lett., 42 (1972) 160. 14. A. E. Clark, Appl. Phys. Lett., 23 (1973) 642. 15. A. C. Epmopehko et al., 17 (1973) 499. 16. T. Ojima et al., J. Appl. Phys., 4 (1977) 671. 17. J. J. Croat, Appl. Phys. Lett., 37 (1980) 1096. 18. J. J. Croat, J. Appl. Phys., 52 (1981) 2509. 19. J. J. Croat, Appl. Phys. Lett., 39 (1981) 357. 20. N. C. Koon and B. N. Das, Appl. Phys. Lett., 39 (1981) 840. 21. J. J. Becker, J. Appl. Phys., 55 (1984) 2067. 22. G. C. Hadjipanayis, R. C. Hazelton and K. R. Lawless, J. Appl. Phys.,55 (1984) 2073. 23. H. H. Stadelmaier and H. K. Park, Z. Metallkd., 72 (1981) 417. 24. M. Sagawa,S. Fujimura,N. Togawa,H. Yamamoto and Y. Matsuura, J. Appl.Phys., 55 (1984) 2083. 25. J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton, J. Appl. Phys., 55 (1984) 2078. 26. D. J. Sellmyer, A. Ahmed, G. Muench and G. Hadjipanayis, J. Appl. Phys., 55 (1984) 2088. 27. Hu Boping, Functional Materials, (1994) 28. 日本產經新聞四月十六日(1991) 29. Eckart F. Kneller and Reinhard Hawig, “The Exchange-spring Magnet: A New Meterial Principle For Permanent Magnets”, IEEE Trans. Magn., MAG-27 (1991) 3588. 30. Ding T et al. J Magn Magn Mater, 124 (1993) 31. Li H S et a1. Solid State Commun, (90) 1994 32. 周壽增等編著,稀土永磁材料及其應用,北京:冶金工業出版社,1995年。 33. 鄭子樵、李紅英主編,稀土功能材料,曉園出版社,2006年3月。 34. Liu J F, Zhang Y, Dimitrov D, et al. J Appl Phys, 85(5) (1999) 35. Kim A S. High temperature stability of SmTM magnets. J Appl Phys, 83 (1998) 36. Zhou J, Skomski R, Chen C, et al. Sm-Co-Cu-Ti high-temperature permanent magnets. Appl Phys Lett, 77(10) (2000) 37. Chen X, Liu J F, Hajipanayis N C, et al. Magnetic and structural properties of commercial Sm2 (Co,Fe,Cu,Zr)17-based magnets. J Appl Phys, 83(11) (1998) 38. K. J. Strnat, in Ferromagnetic Materials, Rare Earth Cobalt Permanent Magnets Vol. 4, edited by E. P. Wohlfarth and K. H. J. Buschow _North-Holland, Amsterdam, (1988) 39. M. Venkatesan, F. M. F. Rhen, R. Gunning, and J. M. D. Coey, IEEE Trans. Magn. 18, 2919 (2002) 40. A. Yan, O. Gutfleisch, T. Gemming, and K.-H. M
摘要: 
本實驗以Sm12Co88為合金粉末基底,添加合金元素(Cu、Cr、Si、Ag、C及Fe)以機械合金法研製並做退火處理,退火溫度分別為600℃、650℃ 、700℃ 、750℃ 、800℃及850℃。首先分別添加Cu、Cr、Si及Ag為第三元素並進行比較,結果發現Cr及Cu的置換效果較為優異,其中Cr又優於Cu。Cr的添加有助於抑制Sm12Co88-xCrx合金退火過程中游離Co的生成,並且可以形成和

The experiment using Sm12Co88 as powder alloy substrate and additional alloy elements such as Cu, Cr, Si, Ag ,C and Fe were added to the substrate. The mechanical milling method were used to synthesize the alloy system and cope with annealing treatment; temperature range from 600-850 degree. Elements such as Cu, Cr, Si and Ag were added first as third element of the alloy and the differences between results were compared. Experiment results showed that using Cr and Cu in substitution for Co will better Sm2Co17 coercivity; especially Cr has the strongest effect. The adding of Cr element can restrain the precipitation of Co element during the annealing of Sm12Co88-xCrx alloy and extended the synthesized temperature range of Th2Ni17-type 2: 17 phase. The increasing of Cr element content in Sm12Co88-xCr x alloy can significantly increasing the coercivity of the alloy system. For example, the Sm12Co81Cr7 alloy can reach a maximum iHc value of 14kOe after 800 ℃ annealing. Although the Cu in substitution for Co will increase the iHc value of the Sm12Co88-xCux alloy system but will also cause the precipitation of Co which will decreasing the alloy's magnetic properties.
A further study of adding C element at the Sm12Co88-xCux alloy shows that there is no significant effect on the alloy's magnetic properties while doping Si element in the alloy system will increasing the precipitation of Co probability. Another case of Cu and Fe element in substitution were also studied. The experimental results showed that the Cu element increasing the coercivity of the Sm12Co88-xCrx alloy system and Fe element can increasing the magnetization of the alloy. An optimum maximum energy product of 12.8 MGOe is obtained in the Sm12(Co0.8Fe0.2)85Cr3 alloy annealed at 750℃ for 15 min.
URI: http://hdl.handle.net/11455/11198
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.