Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLai, Chien-Changen_US
dc.identifier.citation[1] J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, “Mechanisms for Lithium Insertion in Carbonaceous Materials”, Science, 270 (1995) 590 [2] I.A. Courtney, J.R. Dahn, “Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites”, J. Electrochem. Soc. 144 (1997) 2045 [3] M. Winter, J.O. Besenhard, “Electrochemical Lithiation of Tin and Tin-based Intermetallics and Composites”, Electrochimica Aca 45 (1999) 31 [4] S.C Nam, Y.S. Yoon, W.I. Cho, B.M. Cho,H.S. Chun, K.S. Yun, “Enhancement of thin film tin oxide negative electrodes for lithium batteries”, Electrochemistry Communications 3 (2001) 6 [5] W. Choi, J.Y. Lee, B.H. Jung, H.S. Lim, “Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries”, Journal of Power Sources 136 (2004) 154 [6] M. Inaba, T. Uno, A. Tasaka, “Irreversible capacity of electrodeposited Sn thin film anode”, Journal of Power Sources 146 (2005) 473 [7] H. Morimoto, S-I. Tobishima, H. Negishi, “Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries”, Journal of Power Sources 146 (2005) 469 [8] K.-F. Chiu, H.C. Lin, K.M. Lin, T.Y. Lin, and D.T. Shiehc, “Anode-shielded, sputter-deposited nanocrystalline Sn thin-film anodes for lithium-ion batteries”, J. Electrochem. Soc. 153(5) (2006) A920 [9] I.-s. Kim, G.E. Blomgren, and P.N. Kumta, “Sn/C Composite Anodes for Li-Ion Batteries”, Electrochemical and Solid-State Letters 7(3) (2004) A44 [10] A. Sivashanmugam, T. Prem Kumar, N.G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens, J. Garche, “Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries”, Journal of Power Sources 144 (2005) 197 [11] N. Tamur, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, “Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes”, Journal of Power Sources 107 (2002) 48 [12] W. Pu, X. He, J. Ren, C. Wan, Changyin Jiang, “Electrodeposition of Sn–Cu alloy anodes for lithium batteries”, Electrochimica Acta 50 (2005) 4140 [13] Nanomaterials in Secondary Battery Research and Development, [14] H. Sato, T. Minami, S, Takata and T. Yamada, “Transparent. conducting. p -type NiO thin films prepared by. magnetron sputtering”, Thin Solid Films 236 (1993) 27 [15] N. Pereira, L.C. Klein, G.G. Amatucci, “Particle size and multiphase effects on cycling stability using tin-based materials”, Solid State Ionics 167 (2004) 29 [16] J. Hajek, French Patent, 8 (1949) 10 [17] D. Linden, “Handbook of Batteries and Fuel cell”, Ch11, 1-2 (1984) [18] S. Sinha and D. W. Murry, “Lithium intercalation in cubic TiS2”, Solid State Ionic 20(1986)81 [19] R.P. Clement, W.B. Davies, K.A. Ford, M.L. H. Green and A. J. Jacobson, “Organometallic intercalates of the layered transition-metal dichalcogenides TaS/sub 2/ and ZrS/sub 2/”, Inorg. Chem. 17 (1978) 2754 [20] J. R. Dahn and W. R. Mckinnon, “Intercalation Batteries:. Probing Solid State Physics Using Electrochemistry”, Phys. In Canada, July, 93, 1988 [21] Xu.K , “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries”, Chem.Rev, 104 (2004) 4303 [22] B. Scrosat, “Lithium rocking chair batteries: an old concept?”, J. Electrochem. Soc., 139 (1992) 2776 [23] M. Armand, in: Materials for Advanced Batteries, eds. D. W. Murphy,J. Broadhead and B. C. H. Steele (Plenum Press, New York, 1980) . [24] S. Megahed, B. Scrosati, “Rechargeable nonaqueous batteries”, The Electrochem.Soc. Interface, winter 34-37 (1995). [25] Clare P. Grey, Young Joo Lee, “Lithium MAS NMR studies of cathode materials for lithium-ion batteries”, Solid State Sciences, Volume 5, Issue 6, p883-894. (2003). [26] C. Julien and G.-A. Nazri, “Solid State Batteries: Materials Design and Optimization”, Kluwer Academic Publishers (1994) [27] 陳致成,工業材料203期,p.98(2003) [28] L.D. Dyer, B.S. Borie and G.P. Smith, “Alkali Metal-Nickel Oxides of the Type MNiO2”, J.Am.Chem.Soc. 78(1954)1499 [29] W.D Johnston ,R.R. Heikes and D. Sestrich, “The Preparation, Crystallography, and magnetic properties of the Li x Co (1-x) O system”, J. Phys. Chem. Solids 7(1958)1 [30] Z. Zhang, D. Fouchard and J.R Rea, “Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells”, J. Power Sources 70(1998)16 [31] C. Delmas, J.P. Peres, A. Rougier, A. Demourgues, F. Wwill, A. Chadwick, M. Broussely, F. Perton, Ph. Biensan, P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structural overview”, J. Power Sources 68(1997) 120. [32] M.K. Aydinol, A. Van Der Ven and G. Ceder, Mat. Mat. Res. Soc. Symp. Proc. 496 (1998) 65. [33] G.X. Wang , S. Zhong, D.H. bradhurst, S.X. Dou, H.K. Liu,” Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries”, Journal of Power sources 76(1998)141-146 [34] M. Wakihara, Materials Science and Engineering: Review Reports, R33, p109-134. (2001) [35] 謝建德,工業材料203期,p.108(2003) [36] 林育潤,工業材料215期,p.87(2004) [37] 楊模樺,工業材料237期,p.135(2006) [38] K. Hayashi, Y. Nemoto, S. I. Tobishima and J. I. Yamaki, “Mixed solvent electrolyte for high voltage lithium metal secondary cells”, Electrochim. Acta 44 (1999) p2337 [39] P. V. Wright. Br. Polym. J. 7 (1975) p319 [40] W. Wieczorek and J. R. Stevens, “Impedance Spectroscopy and Phase Structure of Polyether-Poly(methyl methacrylate)-LiCF3SO3 Blend-Based Electrolytes”, J. Phys. Chem. B. 1529 (1997) 101. [41] M. Watanabe, M. Kanba, K. Nagaoda and I. Shinohara, “Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4”, J. Polym. Sci. Phys.Ed. 21 (1983) 939. [42] W. Wieczorek, K. Such, Z. Florjanczyk and J. Przyluski, “Application of acrylic polymers in blend-based polymeric electrolytes”, Electrochem. Acta 37 (1992) 1565. [43] J. B. Bates, N. J. Dudney, C. F. Luck, B.C. Sales, R.A. Zuhr, and J.D. Robertson, “Deposition and Characterization of Li2O–SiO2–P2O5 Thin Films”, J. Am. Ceram. Soc. 76(1993)929. [44] 王南欣、吳茂昆,工業材料158期,p.134(2000) [45] H. Takezawa, K. Kanamura, S. Shiraishi, Z. I. Takehara, “Chemical Reaction of Lithium Surface during Immersion in LiClO4 or LiPF6/DEC Electrolyte”, J. Electrochem. Soc. 144 (1997) 1900 [46] J.H. Kim, G.J. Jeong, Y.W. Kim, H.J. Sohn, C.W. Park, and C.K. Lee, “Tin-based oxide as anode materials for lithium secondary batteries”, J. Electrochem. Soc. 150 (2003) A1544 [47] N. Tamura, R. Ohshita, M. Fujimoto, M. Kamino, and S. Fujitani, “Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries”, J. Electrochem. Soc. 150 (2003) A679 [48] H. Li, X. Huang and L. Chen, “Direct Imaging of the Passivating Film and Microstructure of Nanometer-Scale SnO Anodes in Lithium Rechargeable Batteries”, Electrochem. Solid-State Lett. 1 (1998) 241zh_TW
dc.description.abstract本研究成功地在SnCl2及SnCl2、LiNO3混合水溶液中利用電化學方式在不銹鋼基材上分別製備Sn和Sn/Li2O薄膜,並利用XRD、SEM/EDS、以及ESCA來探討顯微結構、表面形貌以及成分分析,除此之外,也進行循環伏安(CV)和充放電測試對電化學性質討論。從電化學測試可證實Sn/Li2O薄膜比Sn擁有更好的循環性,且當充放電範圍為0.02 V - 0.9 V vs. Li/Li+ 及電流密度為800 μA/cm2時,循環性能得到很大的提高。利用定電位所沉積Sn/Li2O薄膜,經五十圈充放之後電容量仍有660 mAh/g,大於商用石墨電極之理論電容量(372 mAh/g)。zh_TW
dc.description.abstractIn this study, Sn and Sn/Li2O film has been successfully deposited on the stainless steel substrate in SnCl2 and SnCl2、LiNO3 mixed solutions by electrochemical method. The microstructure, morphology, and compositions of the materials were investigated by XRD, SEM/EDS, and ESCA. In addition, the electrochemical properties were investigated by CV analysis and charge/discharge cycle tests. Charge/discharge cycle tests demonstrated that Sn/Li2O film showed better cycle performance than pure Sn at the voltage range was 0.02 to 0.9 V and current density of 800 μA/cm2. The capacity of Sn/Li2O film by electrochemical method was still found 660 mAh/g after 50 cycle, and much higher than the capacity of the commercial graphite electrodes (372 mAh/g).zh_TW
dc.description.tableofcontents誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章 文獻回顧 13 2.1 鋰電池之發展與簡介 13 2.2 電極材料與電解質簡介 15 2.2.1 正極材料 15 2.2.2 負極材料 17 2.2.3 電解質簡介 19 第三章 實驗步驟與方法 27 3.1 實驗所使用藥品與器材 27 3.1.1 化學藥品 27 3.1.2 儀器設備 28 3.2 實驗步驟 29 3.2.1 實驗流程圖 29 3.2.2 實驗方法 30 3.2.3 試片前處理 30 3.2.4 電解液製備 30 3.2.5 陰極極化實驗 30 3.2.6 電化學電解沉積薄膜 30 3.2.7 陰乾與低溫熱處理 30 3.2.8 X光繞射分析(X-ray diffraction) 31 3.2.9 場發射掃描式電子顯微鏡(FE-SEM)表面型態觀察 31 3.2.10 感應耦合電漿質譜分析儀 (ICP-MS) 31 3.2.11 電子能譜儀(Auger/ESCA) 32 3.2.12 循環伏安分析(Cyclic Voltammogram,CV) 32 3.2.13 循環充放電測試 32 第四章 結果與討論 35 4.1 陰極極化實驗 35 4.2 定電位沉積Sn 36 4.2.1 不同的電解沉積電位之影響 36 4.2.2 不同的電解沉積時間之影響 36 4.2.3 熱處理之影響 37 4.3 定電位沉積Sn/Li2O 37 4.3.1 Sn/Li2O沉積機構 37 4.3.2 成分結構與形貌分析 38 4.4 脈衝式電鍍法 39 4.5 循環伏安法分析 39 4.6 連續循環充放電測試 40 4.6.1 不同沉積時間充放電性能比較 40 4.6.2 充放電電壓範圍對電容量之影響 48 第五章 結論 98 參考文獻 99zh_TW
dc.titleCharacterization of Electrolytic Sn Deposition for Thin-Film Lithium Ion Battery Anodesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.