Please use this identifier to cite or link to this item:
標題: 以溶膠-凝膠法製備Ba(3-X)SrXCo2Fe24O41六方晶系鐵氧磁體之特性分析與研究
Sr-Ba Substituted Co2Z Hexaferrite Prepared by Sol-gel Method: Process, Structure, and Property
作者: 鍾祥文
Chung, Hsiang-Wen
關鍵字: sol-gel method;溶膠-凝膠法;Co2Z;multi-layer chip beads;high-frequency filter;Co2Z;積層式磁珠;高頻濾波器
出版社: 材料工程學系所
引用: [1] 蔡懷進, “EMI濾波器與功因修正電路整合設計”, 國立中山大學電機工程學系碩士論文(2000). [2] 李世興編譯, ”詳解EMC觀念與對策”, 全華科技圖書股份有限公司(2001). [3] 伊藤健一著、陳連春譯, ”接地與雜訊”, 建興文化事業有限公司(2004). [4] “積層晶片電感製程技術講義”, 財圑法人工業技術研究院工業材料研究所. [5] 山口喬、柳田博明、岡本祥一、近桂一郞, “磁性陶瓷(Magnetic materials ceramics)”, 復漢出版社(1985). [6] M. Endo, A. Nakano, United States Patent, US6749768; Uchikoba, United States Patent, US6127296; Nakano, United States Patent, US6533956; Umemoto, United States Patent, US0224154 . [7] 李延濬, “氧化鉛-氧化銅玻璃添加劑對Co2Z六方晶系鐵氧磁體燒結及磁性質影響”, 義守大學材料科學與工程學系碩士論文(2002). [8] I.N.Lin, R.Mishra and G. Thomas, “Introduction of magnetic domain walls with microstructure feature in spinal ferrite”, IEEE Trans. Magn. 20 (1) (1984) 134-139. [9] A. Nitta, H. Nakamura, T. Komatsu, K. Matusita, “Interface reactions between SiO2-PbO glass and Ni-Zn ferrite, “J. Mater. Sci. 25 (1990) 2857-2860. [10] P. Lubitz, “New substitution in the hexagonal ferrites to reduce anisotropy without using Co”, J. Appl. Phys. 87 (9) (2000) 4978-4980. [11] X. Wang, L. Li, Z. Gui, S. Shu, and J. Zhou, “Preparation and characterization of ultrafine hexagonal ferrite Co2Z powders”, Mater. Chem. Phys. 77 (2002) 248-253. [12] H. Zhang, J. Zhou, Yue, P. Wu and Z. Gui, “Synthesis of Co2Z hexagonal ferrite with planar structure by gel self-propagating method”, Mater. Lett. 43 (2000) 62-65. [13] C. Sudakar, G.N. Subbanna, and T.R.N. Kutty, “Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties”, J. Magn. Magn. Mater. 236 (2003) 253-268. [14] 姚壬謙, “化學共沉法製備Co2Z鐵氧磁體粉末之生成機構研究”, 國立成功大學資源工程學系碩士論文(2001). [15] O. Kimura, “Magnetic of Co2Z for ultra high frequency uses”, Techna. Srl. (1995) 2697-2704 . [16] T. Tachibana, T. Nakagawa, Y. Takada, K. Izumi, T.A. Yamamoto, T. Shimada, and S. Kawano, “X-ray and neutron diffraction studies on iron-substituted Z-type hexagonal barium ferrite: Ba3Co2-xFe24+xO41(x=0-0.6)”, J. Magn. Magn. Mater. 262 (248) (2003) 248-257. [17] H. Zhang, L. Li, J. Zhou, Z. Yue, Z. Gui, Z. Ma, “Microstructure characterization and properties of chemically synthesized Co2Z hexaferrite”, J. Euro. Ceram. Soc. 21 (2001) 149-153. [18] H. Zhang, X. Yao, M. Wu and L. Zhang, “Complex permittivity and permeability of Zn-Co substituted Z type hexaferrite prepared by citrate sol-gel process”, British Ceram. Trans. 102 (1) (2003) 10-15. [19] T. Nakamura and K. Hatakeyama, “Complex permeability of polycrystalline hexagonal ferrite, “IEEE Trans. Magn. 36 (5) (2000) 3415-3417. [20] V.R. Caffarena and T. Ogasawara, “Synthesis by Citrate method and Characterization of Ba3CoCuFe24O41 Hexaferrite”, Acta Micro. 12 (2003) 71- 72. [21] J. D. Wright and N. A.J.M. Sommerdijk, “Sol-gel materials: chemistry and applications”, London: Taylor & Francis (2001). [22] V. D. R. Caffarena, T. Ogasawara, “Magnetic properties and microstructure of Co2Z hexaferrite synthesized by citrate precursor method”, J. Nano. Mater. 20 (21) (2004) 711- 716. [23] T. Ogasawara, M. A. S. Oliveira, J. Magn. Magn. Mater. 217 (2000) 147- 154.
研究中發現以溶膠-凝膠法製備之Ba1.5Sr1.5Co2Fe24O41前驅物粉體可得到良好的元素分散效果,製作之粉體以1200oC /2小時煆燒可得到高純度Co2Z型之六方晶系鐵氧磁體,且晶粒尺寸較固態反應法製備的粉體來得小且均勻,此外,以Sr取代Ba時,當Sr︰Ba之mole比是1.5︰1.5,初導磁率最高,此係因為Co2Z相的純度近100%所致,並且由於Sr之離子半徑較Ba小,晶格係數變小,使超交換交互作用增強,因此導磁率上升。本研究以溶膠-凝膠法製備之Ba1.5Sr1.5Co2Fe24O41材料擁有初導磁率約8、矯頑磁力約5~6 Oe的良好磁特性,相當適合做為高頻濾波器的用途。

Present magnetic component manufacturers use Ni/Cu/Zn ferrite materials to fabricate multi-layer chip beads of pass bands under 50 MHz. As the trend of high-transmission speed in electric circuit applications growing, signal frequency becomes higher. When the signal frequency is greater than 50MHz, signal intensity is attenuated by multi-layer chip beads of the Ni/Cu/Zn ferrites. Hexaferrite Co2Z is a ferrite material of high self resonance frequency (SRF), and is suitable for use as a filter at 300~1,000 MHz. In this regard, this research uses a sol-gel method to synthesize hexaferrite Co2Z powders in an aim that uniformly mixed powders with a high surface energy can be prepared to reduce the formation temperature of Co2Z phase. The process, structure and magnetic characteristics of the sol-gel prepared Co2Z powders were compared with that made from traditional solid-state interaction method. Furthermore, addition of Ba2+ and Sr2+ ions of different mole ratios has been conducted and its influence to the formation temperature and magnetic property of Co2Z is examined.
The sol-gel method produced homogeneously mixed uniform powder/precursor mixtures; which in turn, resulted in high-purity Co2Z phase at 1200oC with a reduced grain size and a more uniform grain-size distribution than those of the solid-state interaction method. For the case that Sr ions are added to substitute Ba ions with a molar ratio of 1.5 : 1.5, the sol-gel synthesized Co2Z powders showed highest initial magnetic permeability. This finding is presumably due to the high purity 100% of Co2Z synthesized and the small radius of Sr ions in comparison to that of Ba ions so that lattice parameter is smaller to facilitate superexchange interactions. In summary, the sol-gel synthesized Co2Z material presents good magnetic characteristics with an initial permeability of 8 and coercive force of 5~6 Oe, suitable for the high-frequency filter applications.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.