Please use this identifier to cite or link to this item:
標題: 以MOCVD進行氧化鋅微結構成長及其機制之探討
A Study on Growth Mechanism of ZnO Microstructures Using MOCVD
作者: 游亭恩
Yu, Ting-En
關鍵字: ZnO;氧化鋅;MOCVD;LED;Al-doped;有機金屬化學氣相沈積;發光二極體;鋁摻雜
出版社: 材料工程學系所
引用: [1] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., Vol. 72, pp. 3270-3272 (1998). [2] P. Sharma, S. Kumar, and K. Sreenivas, “Interaction of surface acoustic waves and ultraviolet light in ZnO films”, J. Mater. Res., Vol. 18, pp. 545-548 (2003). [3] Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, “Room-temperature hydrogen storage characteristics of ZnO nanowires”, Appl. Phys. Lett., Vol. 84, pp. 124-126 (2004). [4] D. C. Look, “Recent advances in ZnO materials and devices”, Mater. Sci. Eng. B, Vol. 80, pp. 383-387 (2001). [5] N. Ohashi, K. Kataoka, T. Ohgaki, T. Miyagi, H. Haneda, and K. Morinaga, “Synthesis of zinc oxide varistors with a breakdown voltage of three volts using an intergranular glass phase in the bismuth-boron-oxide system”, Appl. Phys. Lett., Vol. 83, pp. 4857-4859 (2003). [6] R. Katoh, A. Furube, K. Hara, S. Murata, H. Sugihara, H. Arakawa, and M. Tachiya, “Efficiences of electron injection from excited sensitizer dyes to nanocrystalline ZnO films as studied by near-IR optical absorption of injected electrons”, J. Phys. Chem. B, Vol. 106, pp. 12957-12964 (2002). [7] S. Roy and S. Basu, “Improved zinc oxide thin film for gas sensor applications”, Bull. Mater. Sci., Vol. 25, pp. 513-515 (2002). [8] C. H. Chia, T. Makino, K. Tamura, Y. Segawa, A. Ohtomo, and H. Koinuma, “Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells”, Appl. Phys. Lett., Vol. 82, pp. 1848-1850 (2003). [9] S. W. Kim, Sz. Fujita, and Sg. Fujita, “Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 81, pp. 5036-5038 (2002). [10] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 83, pp. 1635-1637 (2003). [11] X. W. Sun, S. F. Yu, C. X. Xu, C. Yuen, B. J. Chen, and S. Li, “Room-temperature ultraviolet Lasing from Zinc Oxide microtubes”, Jpn. J. Appl. Phys., Vol. 42, pp. L1229-L1231 (2003). [12] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, “Formation of highly aligned ZnO tubes on sapphire (0001) substrates”, Appl. Phys. Lett., Vol. 84, pp. 4098-4100 (2004). [13] W. I. Park, Y. H. Jun, S. W. Jung, and G. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., Vol. 82, pp. 964-966 (2003). [14] X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition” J. Appl. Phys., Vol. 95, pp. 3141-3147 (2004). [15] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of epitaxial nanowires at the junctions of nanowalls”, Science., Vol. 300, pp. 1249 (2003). [16] R. E. Cavicchi and R. H. Silsbee, “Coulomb suppression of tunneling rate from small metal particles”, Phys. Rev. Lett., Vol. 52, pp. 1453-1456 (1984). [17] P. Ball and L. Garwin, “Science at the atomic scale”, Nature, Vol. 355, pp. 761-763 (1992). [18] G. Bersuker, P. Zeitzoff, G. Brown, and H. R. Huff, “Dielectrics for future transistors”, Mater. Today., Vol. 7, pp. 26-33 (2004). [19] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science., Vol. 29, pp. 1947-1949(2001). [20] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications”, J. Phys.: Condens. Matter, Vol. 16, pp. R829-R858 (2004). [21] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices”, Mater. Sci. Eng R., Vol. 47, pp. 1-47 (2004). [22] J. E. Jaffe and A. C. Hess, “Hartree-Fock study of phase changes in ZnO at high pressure”, Phys. Rev. B., Vol. 48, pp. 7903-7909 (1993). [23] K. Thonke, T. Gruber, N. Trofilov, R. Schonfelder, A. Wang, and R. Sauer, “Donor-acceptor pair transitions in ZnO substrate material”, Material Physica B, Vol. 945, pp. 308-310 (2001). [24] D. C. Look, D. C. Reynolds, C. W. Litton, R L. Jones, D. B. Eason, and D. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., Vol. 81, pp. 1830-1832 (2002). [25] R. Dingle, “Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide”, Phys. Rev. Lett., Vol. 23, pp. 579-581 (1969). [26] T. Minami, H. Sato, H. Nanto, and S. Takata, “Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., Vol. 24, pp. L781-L784 (1985). [27] H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy” J. Cryst. Growth., Vol. 237-239, pp. 538-543 (2002). [28] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD”, Thin Solid Films., Vol. 260, pp. 19-20 (1995). [29] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”, Appl. Phys. Lett., Vol. 77, pp. 3761-3763 (2000). [30] W. Walukiewicz, “Defect formation and diffusion in heavily doped semiconductors”, Phys. Rev. B, Vol. 50, pp. 5221-5225 (1994). [31] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 345, pp. 56-58 (1911). [32] C. R. Martin, “Nanomaterials: a membrane-based synthetic approach”, Science, Vol. 266, pp. 1961-1966 (1994). [33] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, Vol. 279, pp. 208-211 (1998). [34] J. J. Wu and S. C. Liu, “Catalyst-free growth and characterization of ZnO nanorods”, J. Phys. Chem. B, Vol. 106, pp. 9546-9551 (2002). [35] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett., Vol. 4, pp. 89-90 (1964). [36] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth”, Science, Vol. 270, pp. 1791-1794 (1995). [37] X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, and L. D. Zhang, “Large-scale synthesis of In2O3 nanowires”, Appl. Phys. A., Vol. 74, pp. 437-439 (2002). [38] X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang, and L. D. Zhang, “Synthesis and photoluminescence of single-crystalline In2O3 nanowires”, J. Mater. Chem., Vol. 12, pp. 1603-1605 (2002). [39] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of Epitaxial Nanowires at the Junctions of Nanowalls”, Science., Vol. 300, pp. 1249 (2003). [40] S. W. Kim, M. S. Yi, and D. H. Yoon, “Catalyst-free synthesis of ZnO nanowall networks on Si3N4/Si substrates by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 88, pp. 253114-253115 (2006). [41] J. Grabowska, A. Meaney, K. K. Nanda, J.-P. Mosnier, M. O. Henry, J. R. Duclère, and E. McGlynn, “Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential”, Phys. Rev. B, Vol. 71. pp. 115439 (2005). [42] J. S. Jeong, J. Y. Lee1, J. H. Cho, C. J. Lee, S. J. An, G. C. Yi and R. Gronsky, “Growth behavior of well-aligned ZnO nanowires on a Si substrate at low temperature and their optical properties”, Nanotechnology, Vol. 16, pp. 2455-2461 (2005). [43] X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, “Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts”, Science., Vol. 303, pp. 1348-1351 (2004). [44] P. X. Gao and Z. L. Wang, “Nanopropeller arrays of zinc oxide”, Appl. Phys. Lett., Vol. 84, pp. 2883-2885 (2004). [45] A. B. Djuri i and Y. H. Leung, “Visible photoluminescence in ZnO tetrapod and multipod structures”, Appl. Phys. Lett., Vol. 84, pp. 2635-2637 (2004). [46] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, Vol. 291, pp. 1947-1949 (2001). [47] W. K. Burton, N. Carberra, and F. C. Frank, “The growth of crystals and equilibrium structure of their surfaces”, Trans. Roy. Soc. (London), Vol. A243, pp. 299-358 (1951). [48] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science., Vol. 292, pp. 1897-1899 (2001). [49] M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires”, Nanotechnology, Vol. 16, pp. 1364-1368 (2005). [50] W. J. Li , E. W. Shi , W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, J. Cryst. Growth., Vol. 203, pp. 186-196 (1999). [51] J. B. Baxter, F. Wu, and E. S, Aydil, “Growth mechanism and characterization of zinc oxide hexagonal columns”, Appl. Phys. Lett., Vol. 83, pp. 3797-3799 (2003). [52] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO Whiskers”, Chem. Mater., Vol. 14, pp. 1216-1219 (2002). [53] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett., Vol. 81, pp. 757-759 (2002). [54] T. E. Murphy, S. Walavalkar, and J. D. Phillips, “Epitaxial growth and surface modeling of ZnO on c-plane Al2O3”, Appl. Phys. Lett., Vol. 85, pp. 6338-6340 (2004). [55] H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam epitaxy”, Jpn. J. Appl. Phys., Vol. 42, pp. 2241-2244 (2003). [56] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to ceramics”, John Wiley & Sons Inc, New York, 2nd Edition, Vol. 58, pp. 414 (1976). [57] K. H. Kim, K. C. Park, D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., Vol. 81, pp. 7764-7772 (1997). [58] E. Burstein, “Anomalous optical absorption limit in InSb”, Phys Rev., Vol. 93, pp. 632-633 (1954). [59] T. S. Moss, “The interpretation of the properties of indium antimonid”, Proc. Phys. Soc. London, Ser. B, Vol. 67, pp. 775-782 (1954).
本論文主要是以垂直式的有機金屬化學氣相沈積系統在藍寶石基板上成長氧化鋅微結構。在論文的第一部份先進行製程溫度對氧化鋅影響之研究。實驗結果發現氧化鋅在350℃成長溫度下會形成膜,在450℃會形成奈米柱,在550℃會形成奈米牆,在650℃高溫會形成奈米線。論文的第二部分別對氧化鋅奈米柱、奈米牆,以及奈米線的形成原因作探討。結果發現氧化鋅奈米柱的形成主要是因為(001)面的成長速度比其它面的成長速度快所造成的。而氧化鋅奈米牆與奈米線的形成主要是因為自形成催化劑之氣體-液體-固體(vapor-liquid-solid)機制所造成的。論文的第三部份我們嘗試摻雜鋁金屬於氧化鋅微結構中,發現隨著鋁掺雜量增加,氧化鋅c軸晶格常數會隨之變大,且隨鋁掺雜量增加,近能隙邊緣發光強度逐漸變小,且有藍移的現象,這與柏斯坦-摩斯效應(Burstein-Moss effect)相符。摻鋁之n型氧化鋅微結構的載子濃度變化從3.08×1019到1.29×1020 cm-3,而載子遷移率變化從29.4到23.8 cm2/V-sec。本論文最後也將摻鋁之氧化鋅微結構應用於氮化鎵發光二極體上,試圖取代銦錫氧化物作為p型氮化鎵上之透明導電層。以摻鋁氧化鋅微結構作為透明傳導層之氮化鎵發光二極體(λD=530 nm, 300×300 μm)在20 mA的操作電流下,其正向電壓值為3.39 V,輸出功率為1.7 mW。

The ZnO microstructures were deposited on sapphire substrates using a vertical metalorganic-chemical-vapor-deposition (MOCVD) system. At first, the effects of growth temperature on the ZnO characteristics were studied. It was found that the surface morphology of the ZnO structure changed dramatically under different growth temperatures. The ZnO morphologies were film-like, nanorod-like, nanowall-like and nanowire-like structure at 350, 450, 550, and 650℃, respectively. Then the growth mechanism of ZnO nanorods, nanowalls and nanowires were discussed. The attention has especially paid to the formation of ZnO nanowalls where it follows the formation mechanism of a self-catalyst vapor-liquid-solid method. We also tried to dope Al into the ZnO microstructure. It was found that the lattice constant c increased with increasing the Al doping concentration while the peak intensity of near band edge (NBE) emission decreased. The NBE peak of Al-doped ZnO microstructure shows blue shift to the higher energy with increasing the Al concentration, which is well known as the Burstein-Moss effect. As a result, the carrier concentration of Al-doped n-type ZnO microsructure varied from 3.08×1019 to 1.29×1020 cm-3 with the carrier mobility changed from 29.4 to 23.8 cm2/V-sec. Finally, in order to replace the conventional indium-tin oxide layer, we used the Al-doped ZnO microstructure as the transparent conducting layer for the GaN light- emitting diode (LED) applications. The GaN LEDs with an Al-doped ZnO transparent conducting layer presented a forward voltage of 3.39 V and an output power of 1.7 mW at 20 mA.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.