Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorHan-Chang Shihen_US
dc.contributorTsong-Jen Yangen_US
dc.contributorYu-Chih Chiehen_US
dc.contributor.advisorFu-Hsing Luen_US
dc.contributor.authorHsu, Chih-Hsiangen_US
dc.identifier.citation(1) 汪建民主編,陶瓷技術手冊 (下),中華民國粉末冶金協會,第二十章 (黃啟祥、林江財),第683~715頁,民國83年。 (2) N.M. Yakovleva, L. Anicai, A. N. Yakovlev, L. Dima, E. Y. Khanina, M. Buda and E. A. Chupakhina, “Structural study of anodic films formed on aluminum in nitric acid electrolyte,” Thin Solid Films, 416 (2002) 16-23. (3) P. Vuoristo, T. Mantyla and P. Kettunen, “Stoichiometry and impurities in sputtered alumina films on copper,” Thin Solid Films, 204 (1991) 297-311. (4) Q. Fu, C. B. Cao and H. S.. Zhu, “Preparation of alumina films from a new sol-gel route,” Thin Solid Films, 348 (1999) 99-102. (5) L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer, “Composition and chemical state of the ions of aluminium-oxide films formed by thermal oxidation of aluminium,” Surf. Sci., 506 (2002) 313-332. (6) N. M. Yakovleva, L. Anicai, A. N. Yakovlev, L. Dima, E. Y. Khanima, M. Buda and E. A. Chupakhina, “Structural study of anodic films formed on aluminum in nitric acid electrolyte,” Thin Solid Films, 416 (2002) 16- 23. (7) 黃子謙,以油酸分散氫氧化鋁膠製造之奈米級 a 相氧化鋁粉末燒結研究,國立成功大學資源工程學系碩士論文,2005年。 (8) A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surf. Coat. Technol., 122 (1999) 73-93. (9) G. P. Wirtz, S. D. Brown, and W. M. Kriven, “Ceramic coatings by anodic spark deposition,” Mater. Manuf. Processes, 6 (1991) 87-115. (10) P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic plasma technology: Science and engineering-An overview,” Surf. Coat. Technol., 201 (2007) 8746-8760. (11) A. L. Yerokhin, V. V. Lyubimov and R. V. Ashitkov, “Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys,” Ceram. Int., 24 (1998) 1-6. (12) E. Morgado, Y. L. Lam, and L. F. Nazar, “Formation of Peptizable Boehmites by Hydrolysis of Aluminum Nitrate in Aqueous Solution,”J. Colloid Interface Sci., 188 (1997) 257-269. (13) Y. Hakuta, T. Adschiri, H. Hirakoso, K. Arai, “Chemical equilibria and particle morphology of boehmite (AlOOH) in sub and supercritical water,” Fluid Phase Equilib., 158- 160 (1999) 733-742. (14) Y. Sarikaya, I. Sevinc,and M. Akinc, “The effect of calcinations temperature on some of the adsorptive properties of fine alumina powder obtained by emulsion evaporation technique,” Powder Technol., 116 (2001) 109-114. (15) T. Wang, R. L. Smith, H. Inomata, K. Arai, “Reactive phase behavior of aluminum nitrate in high temperature and supercritical water,” Hydrometallurgy, 65 (2002) 159- 175. (16) J. H. Kim, K. Y. Jung, K. Y. Park, and S. B. Cho, “Characterization of mesoporous alumina particles prepared by spray pyrolysis of Al(NO3)2 9H2O precursor:Effect of CTAB and urea,” Microporous Mesoporous Mater., 128 (2010) 85-90. (17) L. L. Gruss, and W. Mcneill, “Anodic spark reaction products in aluminate, tungstate and silicate solution,” Electrochem. Technol., 1 (1963) 283- 287. (18) S. D. Brown, K. J. Kuna, and T. B. Van, “Anodic spark deposition from Aqueous solutions of NaAlO2 and Na2SiO3,” J. Am. Ceram. Soc., 54 (1971) 384- 390. (19) T. B. Van, S. D. Brown, and G. P. Wirtz, “Mechanism of anodic spark deposition,” Am. Ceram. Soc. Bull., 56 (1977) 563- 566. (20) W. Xue, Z. Deng, Y. Lai, and R. Chen, “Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy,” J. Am. Ceram. Soc., 81 (1998) 1365-1368. (21) X. Nie, A. Leyland, H. W. Song, A. L. Yerokhin, S. J. Dowey, and A. Matthews, “Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys,” Surf. Coat. Technol., 116 (1999) 1055-1060. (22) W. Xue, Z. Deng, R. Chen, T. Zhang, and H. Ma, “Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation,” J. Mater. Sci., 36 (2001) 2615-2691. (23) J. Tian, Z. Lue, S. Qi, and X. Sun, “Structure and antiwear behavior of micro –arc oxidized coatings on aluminum alloy,” Surf. Coat. Technol., 154 (2002) 1-7. (24) G. Sundararajan, L. R. Krishna, “Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology,” Surf. Coat. Technol., 167 (2003) 269-277. (25) L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland, and A. Matthews, “Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions,” Electrochim. Acta, 49 (2004) 2085-2095. (26) J. A. Curran, T. W. Clyne, “Thermo-physical properties of plasma electrolytic oxide coatings on aluminum,” Surf. Coat. Technol., 199 (2005) 168-176. (27) J. A. Curran, T. W. Clyne, “The Thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium,” Surf. Coat. Technol., 199 (2005) 177-183. (28) G. Y. Jun, X. Yuan, “Correlation between dis charging property and coatings microstructure during plasma electrolytic oxidation,” Trans. Nonferrous Met. Soc. China, 16 (2006) 1097-1102. (29) J. A.Curran, T. W. Clyne, “Porosity in plasma electrolytic oxide coatings,” Acta Mater., 54 (2006) 1985-1993. (30) W. C. Gu, G. H. Lv, H. Chen, G. L. Chen, W. R. Feng and S. Z. Yang, “Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy,” Mater. Sci. Eng., A 447 (2007) 158-162. (31) C. B. Wei, X. B. Tian, S. Q. Yang, X. B. Wang, R. K. Y. Fu and P. K. Chu, “Anode current effects in plasma electrolytic oxidation,” Surf. Coat. Technol., 201 (2007) 5021-5024. (32) J. A. Curran, H. Kalkanci, Y. Magurova and T. W. Clyne, “Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications,” Surf. Coat. Technol., 201 (2007) 8683-8687. (33) Y. Guan, Y. Xia and G. Li, “Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol Ac pulse PEO,” Surf. Coat. Technol., 202 (2008) 4602-4612. (34) F. Y. Jin, K. Wang, M. Zhu, L. R. Shen and J. Li, “Infrared reflection by alumina films produced on aluminum alloy by plasma electrolytic oxidation,” Mater. Chem. Phys., 114 (2009) 398-401. (35) N. Godja, N. Kiss, C. Locker, A. Schindel, A. Gavrilovic, J. Wosik, R. Mann, J. Wendrinsky, A. Merstallinger and G. E. Nauer, “Preparation and characterization of spark-anodized Al-alloys:Physical, chemical and tribological properties,” Tribol. Int., 43 (2010) 1253-1261. (36) H. Y. Ding, Z. D. Dai, S. C. Skuiry and D. Hui, “Corrosion wear behaviors of micro arc oxidation coating of Al2O3 on 2024Al in different aqueous environments at fretting contact,” Tribol. Int., 43 (2010) 868-875. (37) K. Wang, S. S. Byeon and B. H. Koo, “Nitrogen inducing effect on preparation of AlON-Al2O3 coatings on Al6061 alloy by electrolytic plasma processing,” Surf. Coat. Technol., (2010) ASAP. (38) H.S. Hana, S.Y. Kimb, T.H. Jia, Y.J. Jeec, D. Leec, K.S. Jangc, D. H. Ohc, “Heat Sink Design for a Thermoelectric Cooling System,” 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, I-THERM (2008 ) 1222. (39) ASTM D 5470-06, “Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical lnsulation Materials,” ASTM International. (40) F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 6th Edition,John Wiley & Sons, New York, 2006. (41) F. P. Incropera, D. P. DeWitt (原著);侯順雄、王松浩和張仲卿 (譯),熱傳遞,高立圖書有限公司,第一~ 二章,第2~ 72頁,民國95年。 (42) W. D. Callister, Materials Science and Engineering an introduction, 7th Edition, John Wiley & Sons, New York, 2007. (43) National Intrument Corporation. Labview Fundamental. August 2007 Edition, Part Number 324029c-01. (44) R. Mcpherson, “Formation of metastable phases in flame and plasma prepared alumuna,” J. Mater. Sci., 8 (1973) 851-858. (45) A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington and A. Mattews, “Discharge characterization in plasma electrolytic oxidation of aluminium,” J. Phys. D: Appl. Phys., 36 (2003) 2110-2120. (46) T. Tsuchida, K. Kodaira, “Hydrothermal synthesis and characterization of diaspore, β-Al2O3‧H2O,” J. Mater. Sci., 25 (1990) 4423-4426. (47) 翁林樑,以硝酸鋁水溶液混拌油酸製備奈米級a Al2O3 粉末之研究,國立成功大學資源工程學系碩士論文,2005年。 (48) C. Qiyuan, Z. Wenming, G. Songqing, Y. Guanqun, Z. Huifang and Y. Zhonglin, “Determination of the standard molar enthalpy of formation of a AlOOH (diaspore),” J. Chem. Thermodyn., 27 (1995) 443-446. (49) A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington and A. Matthews, “Discharge characterization in plasma electrolytic oxidation of aluminium,” J. Phys. D: Appl. Phys., 36 (2003) 2110-2120. (50) R. H.U. Khan, A. Yerokhin, X. Li, H. Dong, A. Matthews, “Surface characterization of DC plasma electrolytic oxidation treated 6082 aluminium alloy:Effect of current density and electrolyte concentration,” Surf. Coat. Technol. (2010) ASAP. (51) W. C. Gu, G. H. Lv, H. Chen, G. L. Chen, W. R. Feng, G. L. Zhang and S. Z. Yang, “Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3-NaOH and (NaPO3)6-NaOH,” J. Mater. Process. Technol., 182 (2007) 28-33. (52) V. Pokhmurskii, H. Nykyforchyn, M. Student, M. Klapkiv, H. Pokhmurska, B. Wielage, T. Grund and A. Wank, “Plasma electrolytic oxidation of arc-sprayed aluminum coatings,” J. Therm. Spray Technol., 16 (2007) 998-1004. (53) D. R. Crow, Principles and Applications of Electrochemistry, Blackie academic & professional,4th Edition, New York, 1994. (54) P. Laevers, H. Terryn, J. Vereecken and G. E. Thompson, “A study of the mechanism of A. C. electrolytic graining of aluminium in hydrochloric and nitric acid,” Corros. Sci., 35 (1993) 231- 238. (55) H. Terryn, J. Vereecken and G. E. Thompson, “The electrograining of aluminium in hydrochloric acid-I. morphological appearance,” Corros. Sci., 32 (1991) 1159- 1172.zh_TW
dc.description.abstract電漿電解氧化法 (Plasma electrolytic oxidation,PEO) 有別於傳統陽極氧化法,其主要差異在於試片表面產生火花放電,可使成膜速率快速且生成結晶性與附著性較佳的陶瓷膜。本研究主要是利用電漿電解氧化法,使用0.1 M 鋁酸鈉中添加不同濃度的硝酸鋁Al(NO3)3作為電解液,於鋁合金上製備氧化鋁膜。首先以單一0.1 M 鋁酸鈉作為電解液,改變電流密度 (1~ 20 A/dm2) 及反應時間 (10~ 120分鐘) 觀察其對生成氧化鋁膜組成之影響;接著在固定電流密度10 A/dm2,於鋁酸鈉溶液中添加少量的硝酸鋁Al(NO3)3,探討硝酸鋁濃度 (1.0 mM~ 5.3 mM) 與反應時間 (10~ 120分鐘) 對 α-Al2O3 相生成之影響,並比較其與未添加結果之差異。 在鋁酸鈉溶液中添加少量硝酸鋁會降低電解液的導電度,當硝酸鋁濃度在1.6 mM ~ 2.1 mM 範圍時,會產生火花放電延遲現象,當濃度大於5.3 mM,則無火花放電產生。以X光繞射儀分析結果顯示所生成之氧化鋁膜的結晶相主要為 α-Al2O3 和 γ-Al2O3,當添加1.0 mM~ 2.1 mM 硝酸鋁後 (10 A/dm2),氧化膜層中 α-Al2O3 之含量隨硝酸鋁濃度先上升後下降之現象,添加1.6 mM 硝酸鋁可獲得最高 α-Al2O3 含量之氧化膜;另以單一鋁酸鈉為電解液時,氧化鋁膜中之 α-Al2O3 含量隨電流密度及反應時間之增加而升高。在場發射電子顯微鏡表面微結構顯示,在添加硝酸鋁濃度達2.1 mM,表面會產生顯著的孔蝕現象。另外厚度與表面粗糙度一開始皆隨硝酸鋁的添加而有所增加,當硝酸鋁濃度高於1.6 mM,氧化鋁膜粗糙度不變但厚度逐漸下降。不同反應時間,α-Al2O3 皆較未添加有顯著增加,氧化鋁膜之表面硬度亦隨 α-Al2O3 相的含量而變化。然而,鋁基材經PEO製程處理後,大多數熱阻值約 (7.0±1.2℃/W),雖高於鋁基材 (3.4±0.0 ℃/W),但已接近氧化鋁塊材 (5.0±1.6 ℃/W)之熱阻,可以做為絕緣之散熱材料。 火花放電延遲現象主要是在反應初期生成膜層會產生孔蝕現象,造成氧化膜層較不緻密,電解液能直接滲進氧化膜層與陽極-鋁合金直接進行反應,導致陽極與電解液界面阻抗無法快速增加,造成電壓值上升趨緩所致。而添加硝酸鋁造成 α-Al2O3 相的增加,主要是在火花放電過程中能提供足夠之能量生成水鋁石,進而再轉變為 α-Al2O3相,且較未添加者可提高約5倍,也高於未添加4.35 (15 A/dm2-60分鐘)。另外,Iα-Al2O3 與 Iγ-Al2O3 的XRD訊號鋒相對強度亦較文獻中最高者多1.1倍,但文獻使用的電流密度卻是本研究的5倍。zh_TW
dc.description.abstractIn contrast to traditional anodic oxidation, plasma electrolytic oxidation (PEO) can produce better crystalline ceramic coatings with quick deposition rates. The objective of this study is to prepare alumina coatings in an electrolyte with different additive concentrations by PEO on aluminum alloys. It was conducted in 0.1 M NaAlO2 electrolytes at current densities of 1- 20 A/dm2 with reaction time for 10- 120 minutes. Observe the formation of α-Al2O3 phase formed on the influence of differences;and then at fixed the current density of 10 A/dm2 by adding Al(NO3)3 concentration from 1.0 mM-5.3 mM with reaction time for 10- 120 mins, then to compare their results with without adding the difference. As for voltage characteristics, we found the spark discharge was delayed obviously while adding the concentration of Al(NO3)3 in 1.6 mM- 2.1 mM range. The decreasing of electrolyte conductivity could be observed. When the Al(NO3)3 concentration was above 5.3 mM, the discharge voltage varied dramatically but no spark discharge could be found. Obtained alumina coatings were mainly α-Al2O3 and γ-Al2O3 phases by X-ray diffraction. The relative amount of α-Al2O3 increased with the aluminum nitrate concentration while decreased by adding 1.0 mM~ 2.1 mM aluminum nitrates. Moreover, the highest relative amount of α-Al2O3 was obtained by adding 1.6mM Al(NO3)3. The relative amount of α-Al2O3 gradually increased as the current density and the reaction time increased in 0.1 M NaAlO2. The morphology of PEO coatings revealed hemispherical pits on the surface in 2.1 mM Al(NO3)3 by field emission scanning electron microscopy. In contrast to non-add Al(NO3)3 additives, the thickness and surface roughness of coatings were all increased by adding Al(NO3)3 additives. Once the Al(NO3)3 concentration is above 1.6 mM, the coating surface roughness become slowly increasing, but thickness gradually decreasing. AS for cooling applications for aluminum substrate treated by PEO, the thermal resistance was about 7.0±1.2 ℃/W. It was close to the bulk alumina (5.0±1.6 ℃/W) of the thermal resistance although higher than the aluminum substrate (3.4±0.0 ℃/W). Thus, it can be used as insulation materials and heat sink. The hemispherical pits on the surface with less dense film might cause electrolyte penetrating into PEO coatings easily. Therefore, it is difficult to increase the interface impedance between the anode and the electrolyte due to the reaction of electrolytes with Al directly, which makes the delayed discharge voltage. Adding aluminum nitrate caused the α-Al2O3 of coatings increasing with the spark discharge process. It is because there was sufficient energy to make other phase transforme to stable α-Al2O3 phase, which was 5 times higher than that without the additive (15 A/dm2-60 minutes). Besides, α-Al2O3 and γ-Al2O3 in the XRD relative intensity of the signal front was 1.1 times than the literature.en_US
dc.description.tableofcontents目錄 摘要 II 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 2 第二章 理論背景與文獻回顧 4 2.1 氧化鋁簡介 4 2.2 氧化鋁的前導物與結晶相 4 2.3 電漿電解氧化法簡介 7 2.4 電漿電解氧化法製備氧化鋁 11 2.5 熱阻量測 20 2.5.1 熱阻量測規範 20 2.5.2 熱阻定義 22 2.5.3 熱傳遞原理 22 第三章 研究方法 25 3.1 實驗流程 25 3.2 試片製備 26 3.3 氧化鋁膜之製備 27 3.4 分析儀器 28 3.4.1 X光繞射分析儀 28 3.4.2 場發射掃描式電子顯微鏡 28 3.4.3 表面粗度儀 28 3.4.4 維氏硬度 29 3.4.5散熱測試儀組裝與監控程式撰寫 29 第四章 結果 33 4.1原始試片之結晶相與微結構分析 33 4.2 以電漿電解氧化法製備氧化鋁 34 (電解液未添加硝酸鋁) 34 4.2.1 電壓隨反應時間變化曲線 34 4.2.2 試片外觀與結晶相之分析 35 4.2.3 氧化鋁膜之微結構與膜厚分析 40 4.2.4 氧化鋁膜之表面粗糙度分析 46 4.2.5 氧化鋁膜之硬度分析 47 4.3以電漿電解氧化法製備氧化鋁 (添加硝酸鋁) 48 4.3.1不同濃度對氧化鋁膜生成之影響 48電壓值隨反應時間變化曲線 49 氧化膜之外觀與結晶相分析 50 氧化鋁膜之微結構與膜厚分析 52 氧化鋁膜之表面粗糙度分析 54氧化鋁膜之表面硬度分析 54 4.3.2不同反應時間對氧化鋁膜生成之影響 55電壓值反應時間變化曲線 55 氧化膜之外觀與結晶相分析 56 氧化鋁膜之微結構與膜厚分析 60 氧化鋁膜之表面粗糙度分析 63 氧化鋁膜之表面硬度分析 63 4.4 散熱應用評估-熱阻量測 65 第五章 討論 69 5.1 添加硝酸鋁對 α-Al2O3 相生成的影響 69 5.2 添加硝酸鋁對電壓與時間曲線變化之影響 75 第六章 結論 80 參考文獻 82zh_TW
dc.subjectplasma electrolytic oxidationen_US
dc.subjectAluminum nitrateen_US
dc.titleSyntheses of Al2O3 coatings on aluminum alloys by plasma electrolytic oxidationen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:材料科學與工程學系
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.