Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11305
標題: TiVCrZrHf 多元薄膜製備、性質與應用研究
Preparation, Characteristic and Application of TiVCrZrHf Multi-element Thin Films
作者: 梁仕昌
Liang, Shih-Chang
關鍵字: 高熵;high entropy;薄膜;thin film
出版社: 材料科學與工程學系所
引用: Chapter 1 [1] A.S. Penfold, Magnetron sputtering, in: D.A. Glocker, S.I. Shah (Eds.). Handbook of Thin Film Process Technology, Taylor & Francis(2002). [2] E. Bauer, Zeitschr. F. Kristallographie 110 (1958) 372. [3] R. Messier, A. P. Giri, R. A. Roy, J. Vac. Sci. Technol. A 2 (1984) 500-503. [4] R. C. Ross, R. Messier, J. Appl. Phys. 52 (1981) 5329-5339. [5] K. H. Guether, Thin Solid Films 77 (1981) 239-252. [6] J. A. Thornton, J. Vac. Sci. Technol. A 4 (1986) 3059-3065. [7] W.Grzesik, Advanced Protective Coatings for Manufacturing and Engineering, Cincinnati, p. 40-55(2003). [8] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, J. Appl. Phys. 62(1987)481-484. [9] P.B. Mirakami, L. Hultman, S.A. Barnett. Appl. Phys. Lett.57(1990)2654-2656. [10] M. Shinn, L. Hultman, S. A. Barnett, J. Mater. Res.7(1992)901-911. [11] X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, S.A. Barnett, J. Vac. Sci. Technol. A10 (1992) 1604-1609. [12] X. Chu, S.A. Barnett, M.S. Wong, W.D. Sproul, Surf. Coat. Technol.57(1993)13-18. [13] D. Li, X. W. Lin, S.C. Chen, V.P. Dravid, Y.W. Chung, M.S. Wong, W.D. Sproul. Appl. Phys. Lett.68 (1996)1211-1213. [14] M.L. Wu, W.D. Qian, Y.W. Chung, Y.Y. Wang, M.S. Wong, W.D. Sproul, Thin Solid Films308-309(1997)113-117. [15] H. Jensen, J. Sobota, G. Sorensen, Surf. Coat. Technol.94-95(1997)174-178. [16] H. Jensen, J. Sobota, G. Sorensen, J. Vac. Sci. Technol. A16(1998)1180-1884. [17] K.K. Shih,D.B. Dove, Appl. Phys. Lett.61(1992)654-656. [18] X. Chu, M.S. Wong, W.D. Sproul, S. A. Barnett, Surf. Coat. Technol.61 (1993)251-256. [19] A. Madan, X. Chu, S. A. Barnett, Appl. Phys. Lett.68(1996)2198-2200. [20] A. Madan, Y.Y. Wang, S.A. Barnett, C. Engstrom, H. Ljungcrantz, L. Hultman, M. Grimsditch, J. Appl. Phys.84(1998)776-785. [21] S. Veprek, S. Mukherjee, P. Karvankova, H.D. Mannling, J.L. He, K. Moto, J. Prochazka, A.S. Argon, J. Vac. Sci. Technol. A 21(2003)532-544. [22] J.E. Field, The Properties of Diamond, Academic, London,(1979). [23] S.M. Gorbatkin, R.L. Rhoades, T.Y. Tsui, W.C. Oliver, Appl. Phys. Lett.65(1994)2672-2674. [24] W.C. Oliver, G.M. Pharr, J. Mater. Res.7(1991)1564-1583. [25] A.A. Voevodin,J.S. Zabinski, Diamond Relat. Mater.7(1998) 463-467. [26] T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, I.G. Brown, Mater. Res. Soc. Symp. Proc.383 (1995) 447-452. [27] S. Vepřek, Thin Solid Films317(1998)449-454. [28] S. Vepřek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jilek, M. Šima, Surf. Coat. Technol.,108-109(1998)138-147. [29] S. Vepřek, Thin Solid Films297(1997)145-153. [30] C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlček, Surf. Coat. Technol.120-121(1999)405-411. [31] J. Musil, P. Zeman, H. Hruby, P.H. Mayrhofer, Surf. Coat. Technol.120-121(1999)179-183. [32] A. Cavaleiro, B. Trindade, M.T. Vieira, Surf. Coat. Technol.116-119(1999)944-948. [33] C. Louro, A. Cavaleiro, Surf. Coat. Technol.116-119(1999)74-80. [34] M. Benda, J. Musil, Vacuum55(1999)171-175. [35] J. Musil,H. Hruby, Thin Solid Films 365(2000)104-109. [36] Y. Min, Y. Makino, M. Nose, K. Nogi. Thin Solid Films339 (1999) 203-208. [37] J. Musil, H. Polakova, Surf. Coat. Technol.127(2000) 99-106. [38] F. Regent, J. Musil, Surf. Coat. Technol.142-144(2001)146-151. [39] J. Musil, H. Polakova, V. Cibulka, Czech. J. Phys.49(1999)359-372. [40] A.A. Voevodin, J.S. Zabinski, J. Mater. Sci.33 (1998) 319-327. [41] J. Prochazka, P.Karvankova, M.G.J. Vepˇrek-Heijman, S. Vepˇrek, Mater. Sci. Eng. A 384(2004)102-116. [42] G. Long, J. Am. Ceram. Soc. 42(1959)53-59. [43] O. Knotek, T. Leyendecker, F. Jungblut, Thin Solid Films 153 (1987)83-90. [44] D.B. Lews, I. Wadsworth, W.D. Munz, R. Kuzel Jr., V. Valvoda, Surf. Coat. Technol., 116–119 (1999)284-291. [45] F. Huang, G. Wei, J.A. Barnard, M.L. Weaver, Surf. Coat. Technol. 146–147 (2001)391-397. [46] O. Knotek, M. Bo‥hmer, T. Leyendecker, F. Jungblut, Mater. Sci. Eng. A 105-106 (1988)481-488. [47] W.D. Munz, Werkstoffe und Korrosion 41(1990)753-754. [48] Y. Makino, Surf. Coat. Technol. 193(2005)185-191. [49] A. Sugiyama, H. Kajioka, Y. Makino, Surf. Coat. Technol.97(1997)590-594. [50] Y. Makino, K. Nogi, Surf. Coat. Technol.98(1998)1008-1012. [51] H. Hasegawa, T. Yamamoto, T. Suzuki, K. Yamamoto, Surf. Coat. Technol.200(2006)2864-2869. [52] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater.6 (2004)299-303. [53] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater.6 (2004)74-78. [54] T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Surf. Coat. Technol. 188(2004)193-200. [55] T.K. Chen, M.S. Wong, T.T. Shun, J.W. Yeh, Surf. Coat. Technol. 200 (2005)1361-1365. [56] C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. 201 (2006)3275-3280. [57] C.H. Lin, J.G. Duh, J.W. Yeh, Surf. Coat. Technol. 201 (2007)6304-6308. [58] H.W. Chang, P.K. Huang, A. Davison, J.W. Yeh, C.H. Tsau, C.C. Yang, Thin Solid Films 516 (2008)6402-6408. [59] M.H. Tsai, C.H. Lai, J.W. Yeh, J. Y. Gan, J. Phys. D:Appl. Phys.41 (2008)235402-1235402-7. [60] Y.S. Huanga, L. Chenb, H.W. Lui, M.H. Cai, J.W. Yeh, Mater. Sci. Eng. A 457 (2007)77-83. [61] P.K. Huang,J.W. Yeh, Surf. Coat. Technol. 203 (2009)1891-1896. [62] M. Wittmer, J. Vac. Sci. Technol. A 2(1984)273-280. [63] T. Kouno, H. Niwa, M. Yamada, J. Electrochem. Soc. 145 (1998)2164-2167. [64] C.A. Chang, J. Vac. Sci. Technol. A 8(1990)3796-3802. [65] E. Kolawa, J.S. Chen, J.S. Reid, P.J. Pokela,M.A. Nicolet, J. Appl. Phys. 70 (1991)1369-1373. [66] K. Holloway, P.M. Fryer, C. Cabral Jr., J.M.E. Harper, P.J. Bailey, K.H. Kelleher, J. Appl. Phys.71(1992)5433-5444. [67] L.A. Clevenger, N.A. Bojarczuk, K. Holloway, J.M.E. Harper, C. Cabral, Jr., R.G. Schad, F. Cardone, L. Stolt, J. Appl. Phys. 73(1993)300-308. [68] P. Catania, J.P. Doyle, J.J. Cuomo, J. Vac. Sci. Technol. A 10 (1992)3318-3320. [69] H. Itow, Y. Nakasaki, G. Minamihaba, K. Suguro, H. Okano, Appl. Phys. Lett. 63 (1993)934-936. [70] A. Ohta, A. Noya, M. Takeyama, M. Taguchi, T. Sase, K. Sasaki, Thin Solid Films 278(1996)6-11. [71] T. Oku, E. Kawakami, M. Uekubo, K, Takahiro, S. Yamaguchi, M. Murakami, Appl. Surf. Sci. 99(1996)265-272. [72] K.H. Min, K.C. Chun, K.B. Kim, J. Vac. Sci. Technol. B 14(1996)3263-3269. [73] S.H.Kwon, O.K.Kwon, J.S. Min, S.W. Kang, J. Electrochem. Soc. 153 (2006)G578-G581. [74] C.W. Chen, J.S. Chen, J.S. Jeng, J. Electrochem. Soc. 155 (2008)H438-H442. [75] H.Y. Cheng, Y.C. Chen, C.N. Lee, R.J. Chung, T.S. Chin, J. Electrochem. Soc. 153(2006)G685-G691. [76] S. Rawal, D.P. Norton, T.J. Anderson, L.M. White, Appl. Phys. A 94(2009)691-695. [77] P. Majumder, C.Takoudis, J. Electrochem. Soc.155(2008)H703-H706. [78] Y. He,J.Y. Feng, J. Cryst. Growth 263(2004)203-207. [79] B.H. Lee, K. Yong, J. Vac. Sci. Technol. B 22 (2004)2375-2379. [80] P. Majumder,C.G. Takoudis, Appl. Phys. Lett. 91 (2007)162108-1-162108-3. [81] Y. Wang, F. Cao, Y.T. Liu, M.H. Ding, Appl. Phys. Lett. 92 (2008)032108-032108-3. [82] X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, B.Z. Li, Appl. Phys. Lett. 88 (2006)151912-1151912-3. [83] L.C. Leu, D.P. Norton, L.M. White, T.J. Anderson, Appl. Phys. Lett. 92(2008)111917-1-111917-3. [84] M.H. Tsai, J.W. Yeh, J.Y. Gan, Thin Solid Films 516(2008)5527-5530. [85] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, J.Y. Gan, Appl. Phys. Lett. 92 (2008)052109-1-052109-3. [86] S.Y. Chang,D.S. Chen, Appl. Phys. Lett. 94(2009)231909-1231909-3. Chapter 2 [1]. H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes, New Jersey, 1996. [2]. X. Li, C. Li, Y. Zhang, H. Tang, G. Li, C. Mo, Appl. Surf. Sci. 256 (2010) 4272–4279. [3]. L. Chen, Y. Du, S.Q. Wang, A.J. Wang, H.H. Xu, Mater. Sci. Eng. A 502 (2009) 139–143. [4]. S. Vepřek, S. Reiprich, L. Shizhi, Appl. Phys. Lett. 66 (1995) 2640–2642. [5]. M. Braic, V. Braic, M. Balaceanu, G. Pavelescu, A. Vladescu, I. Tudor, A. Popescu, Z. Borsos, C. Logofatu, C.C. Negrila, J. Optoelectron. Adv. Mater. 7 (2005) 671–676. [6]. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303. [7]. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533–2536. [8]. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6 (2004) 74–78. [9]. D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Appl. Surf. Sci. 257 (2010) 1361–1367. [10]. Z.C. Chang, S.C. Liang, S. Han, Y.K. Chen, F.S. Shieu, Nucl. Instrum. Methods Phys. Res. Sect. B 268 (2010) 2504–2509. [11]. C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. 201 (2006) 3275–3280. [12]. K. Yamamoto, U.S. Pat. 7592,061 (2009). [13]. M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177 (2004) 627–630. [14]. N. Ichimiya, Y. Onishi, Y. Tanaka, Surf. Coat. Technol. 200 (2005) 1377–1382. [15]. S.C. Liang, Z.C. Chang, D.C. Tsai, Y.C. Lin, H.S. Sung, M.J. Deng, F.S. Shieu, Appl. Surf. Sci. 257 (2011) 7709–7713. [16]. R.M. Mason, M. Pichiling, J. Phys. D Appl. Phys. 27 (1994) 2363–2371. [17]. H.W. Chang, P.K. Huang, A. Davison, J.W. Yeh, C.H. Tsau, C.C. Yang, Thin Solid Films 516 (2008) 6402–6408. [18]. T.K. Chen, M.S. Wong, T.T. Shun, J.W. Yeh, Surf. Coat. Technol. 200 (2005) 1361–1365. [19]. C.H. Lin, J.G. Duh, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6304–6308. [20]. J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117–128. [21]. S. Mahieu, P. Ghekiere, G.D. Winter, R.D. Gryse, D. Depla, G.V. Tendeloo, O.I. Lebedev, Surf. Coat. Technol. 200 (2006) 2764–2768. [22]. P.K. Huang, J.W. Yeh, Surf. Coat. Technol. 203 (2009) 1891–1896. [23]. J.C. Lin, G. Chen, C. Lee, J. Electrochem. Soc. 146 (1999) 1835–1839. [24]. J.C. Lin, C. Lee, J. Electrochem. Soc. 147 (2000) 713–718. [25]. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York, 1974. [26]. D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Nucl. Instrum. Methods Phys. Res. Sect. B 269 (2011) 685–691. [27]. D.C. Tsai, Y.L. Huang, S.R. Lin, D.R. Jung, S.Y. Chang, F.S. Shieu, J. Alloys Compd. 509 (2011) 3141–3147. [28]. A. van der Drift, Philips Res. Rep. 22 (1967) 267–288. [29]. S. Veprek, J. Vac. Sci. A 17 (1999) 2401–2420. [30]. R.W. Siegel, G.E. Fougere, Nanastruct. Mater. 6 (1995) 205–216. Chapter 3 [1]. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303. [2]. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533–2536. [3]. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6 (2004) 74–78. [4]. Y.S. Huang, L. Chen, H.W. Lui, M.H. Cai, J.W. Yeh, Mater. Sci. Eng. A 457 (2007) 77–83. [5]. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, Mater. Lett. 61 (2007) 1–5. [6]. S.W. Kao, J.W. Yeh, T.S. Chin, J. Phys. C 20 (2008), 145214- 1- 145214- 7. [7]. Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen, Mater. Lett. 62 (2008) 2673–2676. [8]. S. Varalakshmi, M. Kamaraj, B.S. Murty, J. Alloys Compd. 460 (2008) 253–257. [9]. H.W. Chang, P.K. Huang, J.W. Yeh, A. Davison, C.H. Tsau, C.C. Yang, Surf. Coat. Technol. 202 (2008) 3360–3366. [10]. D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Appl. Surf. Sci. 257 (2010) 1361–1367. [11]. C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. 201 (2006) 3275–3280. [12]. C.H. Lai, M.H. Tsai, S.J. Lin, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6993–6998. [13]. P.K. Huang, J.W. Yeh, Surf. Coat. Technol. 203 (2009) 1891–1896. [14]. M.H. Tsai, C.H. Lai, J.W. Yeh, J.Y. Gan, J. Phys. D 41 (2008), 235402- 1- 235402- 7. [15]. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley & Sons, New York, 1974. [16]. C.W. Ong, X.A. Zhao, Y.C. Tsang, C.L. Choy, P.W. Chan, Thin Solid Films 280 (1996) 1–4. [17]. J. Musiland, R. Daniel, Surf. Coat. Technol. 166 (2003) 243–253. [18]. J.E. Sundgren, B.O. Johansson, S.E. Karlsson, H.T.G. Hentzell, Thin Solid Films 105 (1983) 367–384. [19]. S.H. Wang, C.C. Chang, J.S. Chen, J. Vac. Sci. Technol. A 22 (2004) 2145–2151. [20]. S. Ghosh, F. Singh, D. Choudhary, D.K. Avasthi, V. Ganesan, P. Shah, A. Gupta, Surf. Coat. Technol. 142 (2001) 1034–1039. [21]. J.F. Yang, Z.G. Yuan, Q. Liu, X.P. Wang, Q.F. Fang, Mater. Res. Bull. 44 (2009) 86–90. [22]. J.H. Song, S.C. Wang, J.C. Sung, J.L. Huang, D.F. Lii, Thin Solid Films 517 (2009) 4753–4757. [23]. D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Nucl. Instrum. Methods Phys. Res., Sect. B 269 (2011) 685–691. [24]. H.N. Shah, R. Jayaganthan, D. Kaur, R. Chandra, Thin Solid Films 518 (2010) 5762–5768. [25]. T.K. Chen, M.S. Wong, T.T. Shun, J.W. Yeh, Surf. Coat. Technol. 200 (2005) 1361–1365. [26]. H.W. Chang, P.K. Huang, A. Davison, J.W. Yeh, C.H. Tsau, C.C. Yang, Thin Solid Films 516 (2008) 6402–6408. [27]. C.H. Lin, J.G. Duh, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6304–6308. [28]. D.C. Tsai, Y.L. Huang, S.R. Lin, D.R. Jung, S.Y. Chang, F.S. Shieu, J. Alloys Compd. 509 (2011) 3141–3147. Chapter 4 [1]. L.E. Toth, Transition Metal Carbides and Nitrides, Academic, New York, 1971. [2]. U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, J. Appl. Phys. 62 (1987) 481-484. [3]. M. Shinn, L. Hultman, S.A. Barnett, J. Mater. Res. 7 (1992) 901-911. [4]. S. Vepřek, Thin Solid Films 317 (1998) 449-454. [5]. S. Vepřek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jilek, M. Šima, Surf. Coat. Technol. 108-109 (1998) 138-147. [6]. T. Zhou, P. Nie, X. Cai, P.K. Chu, Vacuum 83 (2009) 1057-1059. [7]. M. Uchida, N. Nihira, A. Mitsuob, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177-178 (2004) 627-630. [8]. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303. [9]. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533-2536. [10]. P. K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6 (2004) 74-78. [11]. D.C. Tsai, Y.L. Huang, S.R. Lin, S.C. Liang, F.S. Shieu, Appl. Surf. Sci. 257 (2010) 1361-1367. [12]. C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. 201 (2006) 3275-3280. [13]. C.H. Lai, M.H. Tsai, S.J. Lin, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6993-6998. [14]. P.K. Huang, J.W. Yeh, Surf. Coat. Technol. 203 (2009) 1891-1896. [15]. M.H. Tsai, C.H. Lai, J.W. Yeh, J.Y. Gan, J. Phys. D 41 (2008) 235402-1-235402-7. [16]. S.C. Liang, Z.C. Chang, D.C. Tsai, Y.C. Lin, H.S. Sung, M.J. Deng, F.S. Shieu, Appl. Surf. Sci. 257 (2011) 7709-7713. [17]. K.H. Muller, J. Vac. Sci. Technol. A 4 (1986) 184-188. [18]. C.W. Ong, X.A. Zhao, Y.C. Tsang, C.L. Choy, P.W. Chan, Thin Solid Films 280 (1996) 1-4. [19]. J. Musil and R. Daniel, Surf. Coat. Technol. 166 (2003) 243–253. [20]. D. Gall, S. Kodambaka, M.A. Wall, I. Petrov, J.E. Greene, J. Appl. Phys. 93 (2003) 9086-9094. [21]. I. Petrov, L. Hultman, L.E. Sundgren, J.E. Greene, J. Vac. Sci. Technol. A, 10 (1992) 265-272. [22]. W. Ensinger, Surf. Coat. Technol. 65 (1994) 90-105. [23]. L. Hultman, J.E. Sundgren, J.E. Greene, D.B. Bergstrom, I. Petrov, J. Appl. Phys. 78 (1995) 5395-5403. [24]. H.C. Yao, M.C. Chiu, W.T. Wu, F.S.Shieu, J. Electrochem. Soc. 153 (2006) F237-F243. [25]. D.C. Tsai, F.S. Shieu, S.Y. Cheng, H.C. Yao, M.J. Deng, J. Electrochem. Soc. 157 (2010) K52-K58. [26]. P.M. Babu, B. Radhakrishna, G.V. Rao, P.S. Reddy, S. Uthanna, J. Optoelectron. Adv. Mater. 6 (2004) 205-210. [27]. A. van der Drift, Philips Res. Rep. 22 (1967) 267-288. [28]. D.C. Tsai, Y.L. Huang, S.R. Lin, D.R. Jung, S.Y. Chang, F.S. Shieu, J. Alloys Compd. 509 (2011) 3141-3147. [29]. M.K. Lee, H.S. Kang, W.W. Kim, J.S. Kim, W.J. Lee, J. Mater. Res. 12 (1997) 2393-2400. [30]. J.H. Song, S.C. Wang, J.C. Sung, J.L. Huang, D.F. Lii, Thin Solid Films 517 (2009) 4753–4757. [31]. W.J. Liu, S.J. Wu, C.M. Chen, Y.C. Lai, C.H. Chuang. J. Cryst. Growth 276 (2005) 525-533. [32]. J.G. Kim, Y. Jin. Mater. Sci. Eng. B 57 (1998) 24-27. [33]. S. Veprek, J. Vac. Sci. A 17 (1999) 2401-2420. [34]. M. Tan, J. Zhu, A. Liu, Z. Jia, J. Han, Mater. Lett. 61 (2007) 4647-4650. Chapter 5 [1]. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park, and J. J. Kim, Appl. Phys. Lett., 69, 4182 (1996). [2]. T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S. Yamaguchi, and M. Murakami, Appl. Surf. Sci., 99, 265 (1996). [3]. Y. Wang, C. H. Zhao, F. Cao, and D. W. Yang, Mater Lett., 62, 3761 (2008). [4]. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, and M. A. Nicolet, J. Appl. Phys., 70, 1369 (1991). [5]. J. S. Reid, E. Kolawa, R. P. Ruiz, and M. A. Nicolet, Thin Solid Films, 236, 319 (1993). [6]. Y.Wang, F. Cao, X. D. Yang, andM. H. Ding, Mater. Chem. Phys., 117, 425 (2009). [7]. P. Majumder and C. Takoudis, J. Electrochem. Soc., 155, H703 (2008). [8]. P. Majumder and C. G. Takoudis, Appl. Phys. Lett., 91, 162108 (2007). [9]. Y. Wang, F. Cao, Y. T. Liu, and M. H. Ding, Appl. Phys. Lett., 92, 032108 (2008). [10]. L. C. Leu, D. P. Norton, L. M. White, and T. J. Anderson, Appl. Phys. Lett., 92, 111917 (2008). [11]. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater., 6, 299 (2004). [12]. S. Y. Chang and D. S. Chen, Appl. Phys. Lett., 94, 231909 (2009). [13]. S. Y. Chang, C. Y. Wang, C. E. Li, and Y. C. Huang, Nanosci. Nanotechnol. Lett., 3, 289 (2011). [14]. M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, and J. Y. Gan, Appl. Phys. Lett., 92, 052109 (2008). [15]. D. C. Tsai, Y. L. Huang, S. R. Lin, D. R. Jung, S. Y. Chang, Z. C. Chang, M. J. Deng, and F. S. Shieu, Surf. Coat. Technol., 205, 5064 (2011). [16]. S. C. Liang, Z. C. Chang, D. C. Tsai, Y. C. Lin, H. S. Sung, M. J. Deng, and F. S. Shieu, Appl. Surf. Sci., 257, 7709 (2011). [17]. S. C. Liang, D. C. Tsai, Z. C. Chang, H. S. Sung, Y. C. Lin, Y. J. Yeh, M. J. Deng, and F. S. Shieu, Appl. Surf. Sci., (2011). [18]. S. Y. Chang and D. S. Chen, J. Electrochem. Soc., 157, G154 (2010).
摘要: 
本論文主要利用射頻磁控濺鍍法以單一等莫耳多元合金靶材在不同製程參數下製備TiVCrZrHf多元合金氮化物薄膜於Si晶片上。研究結果與討論主要分為下列幾個部份,第一部份探討氮氣流量對於(TiVCrZrHf)N薄膜結構與機械性質之影響,研究結果發現,當氮氣流量低於2 sccm下,(TiVCrZrHf)N薄膜具有非晶相,隨氮氣流量增加到4與6 sccm,則FCC固溶相生成,結構優選方向會由(111)轉變成(220);其中4 sccm條件下會得到較佳的機械性質,其硬度與彈性係數分別為23.8和267 GPa。第二部份探討基板溫度(RT至450 ℃)對於(TiVCrZrHf)N多元合金氮化物薄膜的結構與機械性質的影響,當溫度上升時,薄膜氮含量會隨之減少,這是因為位於非熱平衡位置之氮原子熱脫附造成。在這個研究裡,(TiVCrZrHf)N多元合金氮化物薄膜在不同溫度製程均呈現FCC結構,其微結構隨溫度上升越來越緻密,因此薄膜機械性質也隨之獲得改善,於基板溫度450 ℃時,可獲得最佳硬度與彈性係數48 GPa 和316 GPa。第三部份主要在基板偏壓(0至200 V)的條件下製備(TiVCrZrHf)N多元合金氮化物薄膜,隨偏壓增加,其FCC結構優選方向由(111)轉變成(200),且晶粒尺寸與表面粗度隨之變小。偏壓增加的效應,可助於硬度與彈性係數等機械性質增加至33 GPa和276 GPa。第四部份則將第一部分製備之(TiVCrZrHf)N多元合金氮化物薄膜應用至擴散阻障之研究;所製備之(TiVCrZrHf)N0.4與(TiVCrZrHf)N擴散阻障層厚度為10 nm。經擴散阻障性質分析發現,(TiVCrZrHf)N0.4與(TiVCrZrHf)N薄膜在600 ℃與800 ℃退火候仍能有效阻止銅矽之交互擴散,非常適合作為應用於IC元件製程之擴散阻障層。

The aim of this study is to prepare, characterize, and apply the TiVCrZrHf multi-element nitride coatings onto Si substrates in Ar and/or N2 atmosphere by magnetron sputtering using a single equimolar TiVCrZrHf alloy target. The deposition parameters such as nitrogen flow rate, substrate temperature and bias were varied to investigate the change of structural and properties of the coatings. The content of the thesis is mainly divided into four sections. In the first section, the (TiVCrZrHf)N coatings were deposited onto Si substrates to understand the influence of N2 flow (0 to 6 sccm) on structure and properties of the coatings. In this study, the (TiVCrZrHf)N coatings deposited at N2 flow rates of 0, 1, and 2 sccm showed an amorphous structure, whereas those deposited at N2 flow rates of 4 and 6 sccm exhibited a simple face-centered cubic solid solution structure. By increasing N2 flow to 4 sccm, the hardness and modulus reached a maximum value of 23.8 and 267.3 GPa, respectively. In the second section, influence of the substrate temperature (RT to 450 ℃) on the structure and properties of the coatings were investigated. By the increasing the substrate temperature, the N content decreased. The decrease in N content obtained at an elevated substrate temperature may be due to its higher desorption rate from the film surface at a higher substrate temperature. Nevertheless, the coating microstructure become denser and denser as the substrate temperature increases. The coatings reach the hardness and modulus of 48 and 316GPa, respectively, by increasing substrate temperature to 450 ℃. In the third section, (TiVCrZrHf)N coatings were deposited under various substrate bias (0 to -200 V). As the substrate bias increased, the preferred orientation of the (TiVCrZrHf)N coatings changed from (111) to (200). Reduced grain size and surface roughness were also observed. As the substrate bias increased, the hardness and the elastic modulus were enhanced to about 33 and 276 GPa, respectively. In the final section, 10 nm-thick sputter-deposited (TiVCrZrHf)N0.4 and (TiVCrZrHf)N thin films were developed as diffusion barrier layers for Cu interconnects. The results show that the (TiVCrZrHf)N0.4 and (TiVCrZrHf)N films can prevent the interdiffusion between Cu and Si up to 600 ℃ and 800 ℃, respectively. The (TiVCrZrHf)N thin film has a high potential of barrier property for the future IC application.
URI: http://hdl.handle.net/11455/11305
其他識別: U0005-0707201219090400
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.