Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorSham-Tsong Shiueen_US
dc.contributor.authorWu, Kuan-Changen_US
dc.identifier.citation[1]J. Robertson, Materials Science and Engineering: R, 37 (2002) 129. [2]P. Ehrenfreund and B.H. Foing, Science, 329 (2010) 1159. [3]C. Sealy, Nanotoday, 6 (2011) 4. [4]R.J. King, Geology Today, 22 (2006) 71. [5]A. Deneuville, Comptes Rendus Physique, 1 (2000) 81. [6]E. Kohn, M. Adamschik, P. Schmid, A. Denisenko, A. Aleksov, and W. Ebert, Journal of Physics D: Applied Physics, 34 (2001) R77. [7]R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I. Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, and S.M. Woollard, Journal of Physics: Condensed Matter, 21 (2009) 364221. [8]H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [9]S. Saito and A. Oshiyama, Physical Review Letters, 66 (1991) 2637. [10]W. Kratschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature, 347 (1990) 354. [11]H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [12]A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature, 350 (1991) 600. [13]S. Iijima, Nature, 354 (1991) 56. [14]R.L. McCreery, Chemical Reviews, 108 (2008) 2646. [15]A. Merkoci, Microchimica Acta, 152 (2006) 157. [16]B.I. Yakabson and R.E. Smalley, Ammons Scientific, 85 (1997) 324. [17]R.S. Ruoff and D.C. Lorents, Carbon, 33 (1995) 925. [18]V.S. Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [19]K.S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [20]A.K. Geim and K.S. Novoselov, Nature Materials, 6 (2007) 183. [21]J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature, 446 (2007) 60. [22]J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nanotechnology, 3 (2008) 206. [23]A. K. Geim, Science, 324 (2009) 1530. [24]R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science, 6 (2008) 1308. [25]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature, 457 (2009) 706. [26]F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nature Materials, 6 (2007) 652. [27]N. Mohanty and V. Berry, Nano Letters, 8 (2008) 4469. [28]H.B. Heersche, P.J. Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, 446 (2007) 56. [29]C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, Applied Physics Letters, 99 (2011) 133113. [30]J. Robertson, Advances in Physics, 35 (1986) 317. [31]A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Roberston, and W.I. Milne, Journal of Applied Physics, 87 (2000) 789. [32]V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, and D.R. Mackenzie, Journal of Physics: Condensed Matter, 5 (1993) L169. [33]V.S. Veerasamy, G.A.J. Amaratunga, J. S. Park, H. S. Mackenzie, and W.I. Milne, IEEE Transations on Electrics Devices, 42(1995) 577. [34]V.S. Veerasamy, G.A.J. Amaratunga, J. S. Park, W. I. Milne, and H. S. Mackenzie, Applied Physics Letters, 64 (1994) 2297. [35]S.R.P. Silva, and G.A.J. Amaratunga, Thin Solid Films, 270 (1995) 194. [36]J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng , B.S. Wang, S.J. Mu, and D.W. Cao, Applied Physics Letters, 90 (2007) 083508. [37]W.S. Choi, K. Kim, J. Yi, and B. Hong, Materials Letters, 62 (2008) 577. [38]A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [39]M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [40]X.M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [41]A. Czyzniewski, Surface and Coatings Technology, 203 (2009) 1027. [42]K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [43]M.L. Hitchman and K.F. Jensen, “Chemical Vapor Deposition,” Academic Press, San Diego, U.S.A. (1993). [44]M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [45]P. Delhaes, Carbon, 40 (2002) 641. [46]H.O. Pieson, “Handbook of Chemical Vapor Deposition,” 2nd, Noyes, New York, U.S.A. (1999). [47]M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [48]A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [49]M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” John Wiley and Sons, New York, U.S.A. (1994). [50]J. Hopwood, Plasma Source Science and Technology, 1 (1992) 109. [51]L.H. Lai, S.T. Shiue, and H.Y. Lin, Vacuum, 87 (2013) 141. [52]C.N. Wei, “Applications of Residual Gas Analyzer in Vacuum Facilities,” Master Thesis, Department of Mechanical Engineering Chung Yuan University, Taoyuan, Taiwan (2005). [53]B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, U.S.A. (2001). [54]R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [55]A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [56]F. Tuinsta and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [57]P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [58]J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [59]J. Kwon, Y.S. Kim, K. Yoon, S. M. Lee, and S.I. Park, Ultramicroscopy, 105 (2005) 51. [60]T. Young, Philosophical Transactions of the Royal Society of London, 95 (1805) 65. [61]Instruction manual of the Four-point Probe (Model: QT-50), Quatek Corporation Limited, Taipei, Taiwan. [62]C. Pan, C.J. Chu, J.L. Margrave, and R.H. Hague, Journal of The Electrochemical Society, 141 (1994) 3246. [63]M. Gulas, C. S. Cojocaru, F. Le Normand, and S. Farhat, Plasma Chemistry and Plasma Processing, 28 (2008) 123. [64]A. Baby, C. M. O. Mahony, and P. D. Maguire, Plasma Sources Science and Technology, 20 (2011) 015003. [65]R.S. Tsang, C.A. Rego, P.W. May, M.N.R. Ashfold, and K.N. Rosser, Diamond and Related Materials, 6 (1997) 247. [66]Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, and S.L. Suib, Surface and Coatings Technology, 200 (2006) 3041. [67]T. Jawhari, A. Roid, and J. Casado, Carbon, 33 (1995) 1561. [68]A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43 (2005) 1731. [69]J.M. Vallerot, X. Bourrat, A. Mouchon, and G. Chollon, Carbon, 44 (2006) 1833. [70]S. Potgieter-Vermaak, N. Maledi, N. Wagner, J.H.P. Van Heerden, R. Van Grieken, and J.H. Potgieter, Journal of Raman Spectroscopy, 42 (2011) 123. [71]A.C. Ferrari and J. Robertson, Physical Review B, 63 (2001) 121405. [72]L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-paniago, and M.A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [73]E. Tomasella, C. Meunier, and S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [74]M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films, 389 (2001) 233. [75]H. Yokomichi, A. Masuda, and N. Kishimoto, Thin Solid Films, 395 (2001) 249. [76]H.S. Zhang, K. Komvopoulos, Journal of Applied Physics, 106 (2009) 093504. [77]P. Merel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [78]G.L. Du, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surface and Coatings Technology, 201 (2007) 5815. [79]S. Kaciulius, Surface and Interface Analysis, 44 (2012) 1155. [80]Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, and C.W. Wilmsen, Surface Science, 182 (1987) 431. [81]Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, Journal of Vacuum Science and Technology A, 5 (1987) 2809. [82]J.C. Lascovich and S. Scaglione, Applied Surface Science, 78 (1994) 17. [83]J.C. Lascovich, R. Giorgi, and S. Scaglione, Applied Surface Science, 47 (1991) 17. [84]A. Mezzi and S. Kaciulis, Surface and Interface Analysis, 42 (2010) 1082. [85]J. Sobol-Antosiak and W. S. Ptak, Mater. Letters, 56, (2002) 842. [86]L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [87]R.N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [88]S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [89]T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [90]J.H. Son, M.Y. Park, and S.W. Rhee, Thin Solid Films, 335 (1998) 229. [91]C. Descamps, G. L. Vignoles, O. Feron, F. Langlais, and J. Lavenac, Journal of The Electrochemical Society, 148 (2001) C695.en_US
dc.description.abstract本篇論文主要是以感應耦合式電漿輔助熱化學氣相沉積法製備碳薄膜,並探討不同乙炔/氮氣比例、射頻功率及沉積溫度對碳薄膜性質之影響。本實驗分別利用殘留氣體分析儀、場發射掃描式電子顯微鏡、X光繞射儀、拉曼散射光譜儀、X光光電子能譜儀、原子力顯微鏡、接觸角量測儀及四點探針儀來分析製程上的殘留氣體、碳薄膜的沉積厚度、微觀結構、表面特性與電學性質。由殘留氣體分析結果可知,氣相中的主要產物包含了 H2、CH3、CH4、C2H、C2H2、HCN 和 N2 (or C2H4)。研究結果發現,碳薄膜的沉積速率隨著 C2H2/(C2H2+N2) 比例增加、射頻功率減少及沉積溫度的下降而上升,其活化能為 184 kJ/mol。結晶度隨著 C2H2/(C2H2+N2) 比例增加、射頻功率減少及沉積溫度的上升而下降。結構有序程度隨著 C2H2/(C2H2+N2) 比例增加、射頻功率增加及沉積溫度的下降而上升。sp2 C=C 鍵結的相對含量隨著 C2H2/(C2H2+N2) 比例增加、射頻功率增加及沉積溫度的下降而下降。當 C2H2/(C2H2+N2) 比例從 20 % 增加至 80 % 時,表面粗糙度由 4.1 nm 下降至 3.1 nm,從 80 % 增加至 100 % 時,表面粗糙度則由 3.1 nm 上升至 3.5 nm;當射頻功率從 0 W 增加至 300 W 時,表面粗糙度由 5.3 nm 下降至 2.9 nm,從 300 W 增加至 400 W 時,表面粗糙度則由 2.9 nm 上升至 3.1 nm;當沉積溫度從 1173 K 上升至 1273 K 時,表面粗糙度由 4.1 nm 下降至 2.8 nm。水接觸角之趨勢則與表面粗糙度呈相反關係。最後,電阻率隨著 C2H2/(C2H2+N2) 比例、射頻功率及沉積溫度的增加而增加。zh_TW
dc.description.abstractThis study investigates the effects of different acetylene/nitrogen ratios, radio-frequency (rf) powers, and deposition temperatures on the properties of carbon thin films prepared by thermal chemical vapor deposition (thermal CVD) enhanced with inductively coupled plasma (ICP). The residual gases, thickness, microstructure, surface properties, and electrical properties of carbon thin films are investigated by residual gases analyzer, field emission scanning electron microscopy, X-ray diffractometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force microscopy, contact angle meter, and four-points probe, respectively. Residual gases analysis results reveal that the main species in the gas phase contain H2, CH3, CH4, C2H, C2H2, HCN, and N2 (or C2H4). Experimental results also indicate that the deposition rate of carbon thin films increases with increasing the C2H2/(C2H2+N2) ratio and deposition temperature, but decreases with increasing the rf power. The activation energy of carbon deposition in this study is 184 kJ/mol. The crystallinity of carbon thin films increases with increasing the rf power, but decreases with increasing the C2H2/(C2H2+N2) ratio and deposition temperature. The ordering degree of carbon thin films increases with increasing the C2H2/(C2H2+N2) ratio and rf power, but decreases with increasing the deposition temperature. The number of sp2 carbon sites increases with increasing the deposition temperature, but decreases with increasing the C2H2/(C2H2+N2) ratio and rf power. As the C2H2/(C2H2+N2) ratio increases from 20 to 80 %, the rf power increases from 0 to 300 W, and the deposition temperature increases from 1173 to 1273 K, the surface roughness of the carbon thin films decreases from 4.1 to 3.1 nm, 5.3 to 2.9 nm, and 4.1 to 2.8 nm, respectively. However, as the C2H2/(C2H2+N2) ratio increases from 80 to 100 % and the rf power increases from 300 to 400 W, the surface roughness of the carbon thin films increases from 3.1 to 3.5 nm and 2.9 to 3.1 nm, respectively. Moreover, the water contanct angles show an opposite trend to the surface roughness of the carbon thin films. Finally, the electrical resistivity of carbon thin films increases with increasing the C2H2/(C2H2+N2) ratio, rf power, and deposition temperature.en_US
dc.description.tableofcontents摘要 I Abstract II 總目錄 IV 圖目錄 VIII 表目錄 XIV 第1章 緒論 1 1.1 碳材料介紹 1 1.2 熱化學氣相沉積法 6 1.2.1 熱化學氣相沉積法簡介與特色 6 1.2.2 熱化學氣相沉積法機制 7 1.2.3 薄膜成長機制 9 1.3 感應耦合式電漿 11 1.4 研究動機與目的 12 1.5 論文概述 13 第2章 實驗步驟 14 2.1 試片準備與前處理 16 2.2 碳薄膜的製備 17 2.2.1 感應耦合式電漿輔助熱化學氣相沉積系統之簡介 17 2.2.2 沉積參數和實驗流程 20 2.3 碳薄膜的量測 22 2.3.1 殘留氣體分析 22 2.3.2 薄膜厚度量測 23 2.3.3 微結構分析及化學組成 24 I. X光繞射儀 (X-ray diffraction, XRD): 24 II. 拉曼散射光譜儀 (Raman scattering spectrometry, RSS): 28 III. X光光電子能譜儀 (X-ray photoelectron spectroscopy, XPS): 30 2.3.4 表面特性量測 33 I. 原子力顯微鏡 (Atomic force microscopy, AFM): 33 II. 接觸角 (Contact angle, CA): 36 2.3.5 電學性質量測 37 第3章 結果與討論 41 3.1 乙炔/氮氣比例對碳薄膜性質之影響 41 3.1.1 殘留氣體分析 41 3.1.2 沉積厚度變化 52 3.1.3 微結構分析及化學組成 55 I. X光繞射分析 55 II. 拉曼散射光譜分析 58 III. X光光電子能譜分析 62 3.1.4 表面粗糙度及抗水性質 66 I. 原子力顯微鏡量測 66 II. 接觸角量測 69 3.1.5 電學性質分析 71 3.2 射頻功率對碳薄膜性質之影響 73 3.2.1 殘留氣體分析 73 3.2.2 沉積厚度變化 78 3.2.3 微結構分析及化學組成 81 I. X光繞射分析 81 II. 拉曼散射光譜分析 84 III. X光光電子能譜分析 87 3.2.4 表面粗糙度及抗水性質 90 I. 原子力顯微鏡量測 90 II. 接觸角量測 93 3.2.5 電學性質分析 94 3.3 沉積溫度對碳薄膜性質之影響 96 3.3.1 殘留氣體分析 96 3.3.2 沉積厚度變化 100 3.3.3 微結構分析及化學組成 104 I. X光繞射分析 104 II. 拉曼散射光譜分析 107 III. X光光電子能譜分析 110 3.3.4 表面粗糙度及抗水性質 113 I. 原子力顯微鏡量測 113 II. 接觸角量測 116 3.3.5 電學性質分析 117 第4章 結論 119 參考文獻 122zh_TW
dc.subjectthermal chemical vapor depositionen_US
dc.subjectinductively coupled plasmaen_US
dc.subjectcarbon filmsen_US
dc.titleCharacteristics of carbon thin films prepared by thermal chemical vapor deposition enhanced with inductively coupled plasma using acetylene/nitrogen mixturesen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:材料科學與工程學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.