Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11374
標題: 尺寸對於矽奈米線陣列之場發特性及鎳矽化物/矽異質結構奈米線之電性的影響
Size effect on Field Emission properties of Si nanowires arrays and electronic properties of Ni-Silicide/Si heterostructure nanowires
作者: 王俊喻
Wang, Jiun-Yu
關鍵字: 奈米線陣列;nanowire arrays;鎳矽化物;場發射;蕭特基能障;nickel-silicide;field-emission;schottky barrier
出版社: 材料科學與工程學系所
引用: [1-1] K. Liu, J. L. Vicent, I. K. Schuller, J. I. Mart, and J. Nogu, “Ordered magnetic nanostructures : fabrication and properties”, Journal of Magnetism and Magnetic Materials 256, 449 (2003). [1-2] H. W. Deckman, and J. H. Dunsmuir, “Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantation”, Appl. Phys. Lett. 41, 40377 (1982). [1-3] J. C. Hulteen, and R. P. V. Duyne, “Nanosphere lithography : A materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Technol. A 13, 1553 (1995). [1-4] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors”, Nano Letters, 3, 149 (2003). [1-5] T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology 19, 295203 (2008). [1-6] J. C. She, S. Z. Deng, N. S. Xu, R. H.Yao, and J.Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters 88, 013112 (2006). [1-7] A. M. Morales, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, science 279, 208 (1998). [1-8] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chemical Physics Letters 337, 18 (2001). [1-9] N. Wang, Y. Cai and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports 60, 1 (2008). [1-10] X. Li and P. W. Bohn. “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letters 77,16 [1-11] T. R Society, R. C. Society, and P. Character, “Electron emission in intense electric fields”, Royal Society of London. Series A, Containing Papers of a Published, 119, 173 (1928). [1-12] L. W. Nordheim, “The effect of the image force on the emission and reflexion of electrons by metals”, Physical and Engineering Sciences, 121, 626(1928). [1-13] C. a. Spindt, “A thin-film field-emission cathode”, Journal of Applied Physics, 39, 3504 (1968). [1-14] C. a. Spindt, “Physical properties of thin-film field emission cathodes with molybdenum cones”, Journal of Applied Physics, 47(12), 5248 (1976). [2-1] X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques”, Journal of Nanoscience and Nanotechnology, 6, 1920 (2006) [2-2] P. C. Tseng, M. A. Tsai, P. Yu, and H. C. Kuo, “Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells”, Appl, 135 (2012). [2-3] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks”, small-joirnal, 1, 439 (2005). [2-4] S. Xiao, X. Yang, E. W. Edwards, Y.-H. La, and P. F. Nealey, “Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays”, Nanotechnology, 16, S324–9 (2005). [2-5] Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal”, Applied Physics A, 92(2), 291 (2008). [2-6] T.-Y. Tsai, T.-H. Chen, N.-H. Tai, S.-C. Chang, H.-C. Hsu, and T. J. Palathinkal, “The fabrication of a carbon nanotube array using a catalyst-poisoning layer in the inverse nano-sphere lithography method”, Nanotechnology, 20, 305303 (2009). [2-7] N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir,8, 3183 (1992). [2-8] H. W. Deckman, and J. H. Dunsmuir, “Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantation”, Appl. Phys. Lett.41,40377 (1982). [2-9] J. C. Hulteen, D. a. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays”, The Journal of Physical Chemistry B, 103, 3854 (1999). [2-10] M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the Air/Water interface”. Macromolecular Chemistry and Physics, 210, 230 (2009). [2-11] N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir ,(17), 3183 (1992). [2-12] R. Micheletto, H. Fukuda, and M. Ohtsut, “A simple method for the production of a two-dimensional”, Ordered Array of Small Latex Particles, Langmuir,11, 3333 (1999). [2-13] N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, langmuir , (17), 3183 (1992). [2-14] J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219, 1 (2003). [2-15] P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering: B, 165, 186 (2009). [2-16] A. S. Dimitrov, and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces”. Langmuir, 12, 1303 (1996). [2-17] M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly”, Advanced Functional Materials, 15, 1329 (2005). [2-18] W. Li, W. Zhao, and P. Sun, “Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography”, Physica E: Low-dimensional Systems and Nanostructures, 41, 1600 (2009). [2-19] A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching”: Adding Flexibility to Colloid Lithography. Advanced Functional Materials, 19, 3279 (2009). [2-20] C. Cong, W. C. Junus, Z. Shen, and T. Yu, “New colloidal lithographic nanopatterns fabricated by combining pre-heating and reactive ion etching”, Nanoscale research letters, 4, 1324 (2009). [2-21] B. Yan, Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, et al. “A simple route to silicon-based nanostructures”, Adv. Mater., 296, 844 (1999). [2-22] B. F. Marlow, M. D. Mcgehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, “Doped mesoporous silica fibers : a new laser material”, Adv. Mater., 11, 632 (2002). [2-23] T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology, 19, 295203 (2008). [2-24] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors”, Nano Letters, 3, 149 (2003). [2-25] J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, and J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters, 88, 013112 (2006). [2-26] T. Hanrath, and B. a. Korgel, “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals”, Journal of the American Chemical Society, 124, 1424 (2002). [2-27] R.-Q. Zhang, Y. Lifshitz, and S.-T. Lee, “Oxide-assisted growth of semiconducting nanowires”, Advanced Materials, 15, 635 (2003). [2-28] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Aligned silica nanofibres”, J. Phys.: Condens. Matter 14, L473 (2002). [2-29] L. Dai, X. L. Chen, T. Zhou, B. Q. Hu, J. K. Jian, and W. J. Wang, “Strong blue photoluminescence from aligned silica nanofibers”, Applied Physics A: Materials Science and Processing, 76, 625 (2003). [2-30] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Applied Physics Letters, 4, 89 (1964). [2-31] C. Ellis, “The vapor-liquid-solid mechanism of crystal growth” , 233(June) (1965). [2-32] H. F. Yan, Y. J. Xing, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid – liquid – solid mechanism”, Chemical Physics Letters, 323,224 (2000). [2-33] H.-K. Park, B. Yang, S.-W. Kim, G.-H. Kim, D.-H. Youn, S.-H. Kim, and S.-L. Maeng, “Formation of silicon oxide nanowires directly from Au/Si and Pd–Au/Si substrates”, Physica E: Low-dimensional Systems and Nanostructures, 37, 158 (2007). [2-34] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth”, Science, 270, 1791 (1995). [2-35] X. Lu, D. D. Fanfair, K. P. Johnston, and B. a. Korgel, “High yield solution-liquid-solid synthesis of germanium nanowires”, Journal of the American Chemical Society, 127, 15718 (2005). [2-36] X. Lu, T. Hanrath, K. P. Johnston, and B. a. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano Letters, 3, 93 (2003). [2-37] T. Hanrath, and B. a. Korgel, “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals”, Journal of the American Chemical Society, 124, 1424 (2002). [2-38] A. M. Morales, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, 279, 208 (1998). [2-39] K. A. Jeon, J. H. Kim, and S. Y. Lee, “Simple method for synthesis of silicon nanowire: Pulsed laser deposition in furnace from p-Si wafer target”, Progress in Solid State Chemistry, 33, 107 (2005). [2-40] N. Fukata, T. Oshima, T. Tsurui, S. Ito, and K. Murakami, “Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam”, Science and Technology of Advanced Materials, 6, 628 (2005). [2-41] N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports, 60, 1 (2008). [2-42] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chemical Physicsc Letters, 337, 18 (2001). [2-43] K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching”, Advanced Functional Materials, 18, 3026 (2008). [2-44] O. Fellahi, T. Hadjersi, M. Maamache, S. Bouanik, and A. Manseri, “Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching”, Applied Surface Science, 257, 591 (2010). [2-45] X. Li, and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letter, 77, 16 (2000). [2-46] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, 13, 127 (2003). [2-47] P. J. Holmes, “The electrochemistry of semiconductors”, Academic press, 329, (1962). [2-48] H. C. Nathanson, R. N.Thomas, J. Guldberg, C. Nathanson, E. Bassous, F. Baran, F. Meeting, et al. “Anisotropic etching of silicon”, ED25, 1185 (1978). [2-49] J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows preferential etching of p-n junction”, Journal of The Electrochemical Society, 116, 1325 (1969). [2-50] J. Jin-Young, G. Zhongyi, J. Sang-Won, U. Han-Don, P. Kwang-Tae, and L. Jung-Ho, “Optically improved solar cell using tapered silicon nano wires”, in Nanotechnology (IEEE-NANO), 10th IEEE Conference on, 2010, 1163 (2010). [2-51] A. Lauwers, P. Besser, T. Gutt, A. Satta, M. D. Potter, R. Lindsay, N. Roelandts, et al. “Comparative study of Ni-silicide and Co-silicide for sub 0.25-mm technologies”, Microelectronic Engineering,50, 103 (2000). [2-52] C. Detavernier, R. L. V. Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 formation through SiO2”, Thin Solid Films 386. 19_26 (2001). [2-53] G. Palasantzas, “Roughness effects on the thermal stability of thin films”, Journal of Applied Physics, 81, 246 (1997). [2-54] F. Zhao, J. Zheng, , Z. Shen T. Osipowicz, W. Gao, and L. Chan, “Thermal stability study of NiSi and NiSi2 thin films”, Microelectronic Engineering, 71, 104 (2004). [2-55] S. P. Maruarka, “Silicide for VLSI Applications”, Academic Press, New York (1983). [2-56] Z. He, D. Smith, and P. Bennett, “Endotaxial Silicide Nanowires”, Physical Review Letters, 93, 1(2004). [2-57] P. a. Bennett, B. Ashcroft, Z. He, and R. M. Tromp, “Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 20, 2500 (2002). [2-58] H.-C. Hsu, W.-W. Wu, H.-F. Hsu, and L.-J. Chen, “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface”, Nano Letters, 7, 885 (2007). [2-59] S. Y. Chen, and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy”, Thin Solid Films, 508, 222 (2006). [2-60] S. Y. Chen, and L. J.Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Applied Physics Letters, 87, 253111 (2005). [4-1] J. Rybczynski, U. Ebels, and M. Giersig, "Large-scale, 2D arrays of magnetic nanoparticles." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219, 1 (2003). [4-2] P.I. Stavroulakis , N. Christou , and D. Bagnall, "Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering: B, 165, 186 (2009). [4-3] J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface”, ACS applied materials and interfaces, 2, 1922 (2010). [4-4] Y. Xia, B. Gates, Y. Yin, and Y. Lu, "Monodispersed colloidal spheres: old materials with new applications”, Advanced Materials, 12, 693 (2000). [4-5] N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura , and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir 1992,8,3183-3190 (1992). [4-6] A. Plettl, F. Enderle, M. Saitner, A. Manzke , C. Pfahler, S. Wiedemann, and P. Ziemann, "Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography”, Advanced Functional Materials, 19, 3279 (2009). [4-7] J. M. Weisse, D. R. Kim, C. H. Lee , and X. Zheng, "Vertical transfer of uniform silicon nanowire arrays via crack formation”, Nano letters, 11, 1300 (2011). [4-8] M. H. Yun, V. A. Burrows, and M. N. Kozicki, "Analysis of KOH etching of (100) silicon on insulator for the fabrication of nanoscale tips”, J. Vac. Sci. Technol. B 16, 2844 (1998). [4-9] H. C. Nathanson, R. N. Thomas , J. Guldberg, C. Nathanson, E. Bassous, F. Baran, F. Meeting, et al. “Anisotropic etching of silicon”, ED25, 1185 (1978). [4-10] J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows preferential etching of p-n junction”, Journal of The Electrochemical Society, 116, 1325 (1969). [4-11] R. H. Fowler , F.R.S and Dr. L. Nordheim, “Electron emission in intense electric field”, 5.173 (1928). [4-12] C. Chang , Y. Chang, C. Lee , P. Yeh, W. Lee, and L. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C,113, 9153 (2009). [4-13] H. B. Michaelson, “The work function of the elements and its periodicity”, Journal of Applied Physics, 48, 4729 (1977). [4-14] W. M. Weber , L. Geelhaar, E. Unger, C. Cheze , F. Kreupl, H. Riechert, and P. Lugli, “Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics”, Physica Status Solidi (B), 244, 4170 (2007). [4-15] A. Katsman, Y. Yaish, E. Rabkin, , and M. Beregovsky, “Surface diffusion controlled formation of nickel silicides in silicon nanowires”, Journal of Electronic Materials, 39, 365 (2010). [4-16] O. Nakatsuka , K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi 2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics, 44, 2945 (2005). [4-17] A. Vantomme, S. Degroote, J. Dekoster , G. Langouche, and R. Pretorius, “Concentration-controlled phase selection of silicide formation during reactive deposition”, Applied Physics Letters, 74, 3137 (1999). [4-18] C.-Y. Liu, W.-S. Li, L.-W. Chu, M.-Y. Lu, C.-J. Tsai, and L.-J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology, 22, 055603 (2011). [4-19] C. H. Ji, W. A. Anderson , “Metal-induced grown Si nanostructures for large-area-device application”, IEEE, 50,1885 (2003). [4-20] C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma,and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays”, Physica E: Low-dimensional Systems and Nanostructures, 30, 169 (2005). [4-21] P. T. Joseph, N. H. Tai, Y. F. Cheng, C. Y. Lee, H. F. Cheng , and I. N. Lin, “Growth and electron field emission properties of ultrananocrystalline diamond on silicon nanostructures”, Diamond and Related Materials, 18, 169 (2009). [4-22] S.-C. Tseng, H.-L. Chen, C.-C. Yu, Y.-S. Lai, and H.-W. Liu, “Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties”, Energy and Environmental Science, 4, 5020 (2011).
摘要: 
奈米尺度的蕭特基接觸(Schottky Contact)應用於二極體、蕭特基場效電晶體及太陽能電池上之研究被廣為探討,而其中具有蕭特基特性的金屬矽化物/矽奈米異質接面受到相當大的注目,因其能相容於矽基元件。
  本實驗以奈米球微影法及金屬輔助催化蝕刻製備矽奈米線陣列,並以氫氧化鉀溶液對矽奈米線進行蝕刻,並且在低溫下利用反應式磊晶法及傾斜入射角方式蒸鍍鎳金屬於奈米線陣列尖端,以成長鎳矽化物/矽異質結構奈米線。
  研究結果顯示,隨著矽奈米線直經減小,場發射效應之起始電場下降及場發射增強因子上升,表示高寬比的增加可提升奈米線陣列的場發射性質。經在400°C以傾斜入射角方式蒸鍍鎳金屬之後,在矽奈米線尖端生成鎳矽化物,在與矽之界面處為NiSi2相,當奈米線尺寸小於70 nm時,矽化物的頭端為Ni2Si相。NiSi2 /矽異質接面為蕭基接面,蕭特基能障高度在0.39-0.45 eV之間,理想因子則介於3.1 - 3.5之間。

Nanoscale Schottky contact used for diodes, Schottky barrier field effect transistors and solar cells have been extensively studied. The Schottky metal silicide/Si heterojunctions in nanostructures have been widely investigated due to their applicability to Si-based devices.
The free-standing Si NW arrays have been fabricated by the combining nanosphere lithography with metal-assisted catalytic etching. Further, chemical etching using a KOH solution was performed for adjusting the diameter of nanowires. Then, nickel silicide/Si heterostructure nanowires were formed by reactive deposition epitaxy and a glancing angle deposition technique.
The results show that with reducing the diameter of Si nanowires, the turn-on field decreased and field emission enhancement factor increased. This phenomenon indicated that increasing the aspect ratio of nanowires can improve their field emission properties. Ni-silicides were formed at the apex of Si nanowires after depositing Ni at 400�C by the glancing angle deposition technique. The phase of silicide at the silicide/Si interface was NiSi2. When the diameter of nanowires reduced to 70 nm the front end of silicide was Ni2Si. The NiSi2/silicon heterojunction was Schottky contact. The Schottky barrier height was in the range of 0.39 to 0.45 eV, and the ideal factor was in the range of 3.1 to 3.5.
URI: http://hdl.handle.net/11455/11374
其他識別: U0005-3008201217442200
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.