Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11390
標題: 探討溫度效應對不同銦含量之氮化銦鎵光伏元件特性
Temperature-dependent effect on Different Indium contents of InGaN photovoltaic cells
作者: 鄭博夫
Cheng, Po-Fu
關鍵字: 氮化銦鎵;InGaN;光伏元件;變溫;photovoltaic cell;temperature-dependent
出版社: 材料科學與工程學系所
引用: [1] W. G. Adams, and R. E. Day, “The Action of Light on Selenium,” Proceedings of the Royal Society of London 25, pp. 113-117 (1876). [2] A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 322, pp. 132-148 (1905). [3] K. A. Tsokos, “Physics for the IB Diploma”, Cambridge University Press, ISBN: 0521708206, 9780521708203 (2008). [4] Greg Wilson, “Research Cell Efficiency Records,” National Renewable Energy Laboratory (2013). [5] Sunshot, U.S. Department of Energy, “SunShot Vision Study,” SunShot Vision Study, pp. 69-96 (2012). [6] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Iva- nov, F. Bechstedt, J. Furthmulller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229, r1-r3 (2002). [7] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,”Appl. Phys. Lett. 80, 4741 (2002). [8] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246 (2002). [9] Spectrolab Inc., “Triple-Junction Terrestrial Concentrator Solar Cells,” Spectrolab Inc. (2001). [10] E. Fred Schubert, “Light-Emitting Diodes,” Cambridge University Press, ISBN: 1139455222, 9781139455220 (2002). [11] K. Kim, M. C. Yoo, K. H. Shim, and J. T. Verdeyen, “ Growth and characterization of GaN on sapphire (0001) using plasma‐assisted ionized source beam epitaxy,” J. Vac. Sci. Technol. B 13, 796 (1995). [12] Jaques I. Pankove, “Optical Processes in Semi-conductors,” Courier Dover Publications, ISBN: 0486138704, 9780486138701 (1971). [13] E. D. Palik, “Handbook of Optical Constants of Solids: Index,” Academic Press, ISBN: 0125444230, 9780125444231 (1998). [14] American Society for Testing and Materials (ASTM) International, “G173-03(2012) Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface,” ASTM International, West Conshohocken (2012). [15] S. M. Sze, “Semiconductor Devices: Physics and Technology,” Wiley, ISBN: 0471333727, 9780471333722 (2004). [16] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles,” McGraw-Hill Higher Education, ISBN: 0071089020, 9780071089029 (2012). [17] Antonio Luque, and Steven Hegedus, “Handbook of Photovoltaic Science and Engineering,” John Wiley & Sons, ISBN: 0470976128, 9780470976128 (2011). [18] Tom Markvart, and Luis Castaner, “Solar Cells: Materials, Manufacture and Operation,” Elsevier, ISBN: 0080541410, 9780080541419 (2004). [19] Adolf Goetzberger, and Volker Uwe Hoffmann, “Photovoltaic Solar Energy Generation,” Springer, ISBN: 3540236767, 9783540236764 (2005). [20] Marius Grundmann, “The Physics of Semiconductors: An Introduction Including Nanophysics and Applications,” Springer, ISBN: 3642138845, 9783642138843 (2011). [21] Kinsey, G. S., Hebert, P., Barbour, K. E., Krut, D. D., Cotal, H. L. and Sherif, R. A., “Concentrator multijunction solar cell characteristics under variable intensity and temperature,” Prog. Photovolt: Res. Appl. 16, pp.503–508 (2001). [22] J. Nelson, “The Physics of Solar Cells,” Imperial College Press, ISBN: 1860943497, 9781860943492 (2003). [23] Ghassan Zubia, José L. Bernal-Agustína, and Gian Vincenzo Fracastorob, “High concentration photovoltaic systems applying III–V cells,” Renewable and Sustainable Energy Reviews 13, pp. 2645-2652 (2009). [24] Sean E. Shaheen, Christoph J. Brabec, N. Serdar Sariciftci, Franz Padinger, Thomas Fromherz, and Jan C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett. 78, 841 (2001). [25] Michael Riordan, and Lillian Hoddeson, “Crystal fire: the birth of the information age,” W W Norton & Company Incorporated, ISBN: 0393041247, 9780393041248 (1997). [26] Gerald B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice,” Academic Press, ISBN: 0080538185, 9780080538181 (1999). [27] Rointan F. Bunshah, “Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications,” Noyes Publications, ISBN: 0815513372, 9780815513377 (1994). [28] Akbar Montaser, and D. W. Golightly, “Inductively coupled plasmas in analytical atomic spectrometry,” VCH Publishers, ISBN: 089573334X, 9780895733344 (1994). [29] Harry J. Levinson, “Principles Of Lithography,” SPIE Press, ISBN: 0819456608, 9780819456601 (2005). [30] Woodrow A. Fiveland, “Fundamentals of radiation heat transfer,” American Society of Mechanical Engineers, ISBN: 0791807290, 9780791807293 (1991). [31] Chen-Fu Chu, Fang-I Lai, Jung-Tang Chu, Chang-Chin Yu, Chia-Feng Lin, Hao-Chung Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” J. Appl. Phys. 95, 3916 (2004). [32] Alan D. MacNaught, and Andrew R. Wilkinson, “Compendium of Chemical Terminology: Iupac Recommendations,” Blackwell Science, ISBN: 0865426848, 9780865426849 (1997). [33] Rita G. Lerner, and George L. Trigg, “Encyclopedia of Physics,” Wiley, ISBN: 3527405542, 9783527405541 (2005). [34] Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, E. Fred Schubert, Joachim Piprek, and Yongjo Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007). [35] Teo, K. L., Colton, J. S., Yu, P. Y., Weber, E. R., Li, M. F., Liu, W., and Matsumoto, K., “An analysis of temperature dependent photoluminescence line shapes in InGaN,” Applied physics letters 73, 1697-1699 (1998). [36] H. Haug, and Stephan W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors,” World Scientific, ISBN: 9812387560, 9789812387561 (2004). [37] K. P. O''Donnell, and X. Chen, “Temperature dependence of semiconductor band gaps,” Applied physics letters 58.25, pp. 2924-2926 (1991). [38] H. Cotal, and R. Sherif, “Temperature dependence of the IV parameters from triple junction GaInP/InGaAs/Ge concentrator solar cells,” in Conf. Rec. IEEE 4th World Conf. Photovolt. Energy Convers., pp. 845–848 (2006). [39] Ewa Radziemska, “Thermal performance of Si and GaAs based solar cells and modules: a review,” Progress in Energy and Combustion Science 29, pp. 407–424 (2003). [40] Lai, K. Y., Lin, G. J., Chen, C. Y., Lai, Y. L., and He, J. H., “Origin of hot carriers in InGaN-based quantum-well solar cells,” Electron Device Letters, IEEE 32, pp. 179-181 (2011). [41] Xiao-Mei Cai, Sheng-Wei Zeng, Xin Li, Jiang-Yong Zhang, Shuo Lin, An-Kai Ling, Ming Chen, Wen-Jie Liu, Shao-Xiong Wu, and Bao-Ping Zhang, “Dependence of the Property of InGaN p-i-n Solar Cells on the Light Concentration and Temperature,” Electron Devices, IEEE Transactions on 58, pp. 3905-3911. [42] Qingwen Deng, Xiaoliang Wang, Hongling Xiao, Cuimei Wang, Haibo Yin, Hong Chen, Qifeng Hou, Defeng Lin, Jinmin Li, Zhanguo Wang, and Xun Hou, “An investigation on InxGa1−xN/GaN multiple quantum well solar cells,” J. Phys. D: Appl. Phys. 44 265103 (2011). [43] K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96, 081103 (2010). [44] Kuei-Ting Chen, Chia-Feng Lin, Chun-Min Lin, Chung-Chieh Yang, Ren-Hao Jiang, “InGaN-based light-emitting solar cells with a pattern-nanoporous p-type GaN:Mg layer,” Thin Solid Films 518, pp. 7377–7380 (2008).
摘要: 
我們利用有機金屬氣相沉積的磊晶製程,控制成長出具有不同銦含量的氮化銦鎵/氮化鎵之多重量子井結構光伏元件,本研究成果便是探討不同銦含量元件分別在不同溫度下所產生的光伏特性變化。
降低銦含量會提升量子井的高度、同時也會造成元件本身的發光波長降低,由於我們觀察到氮化銦鎵/氮化鎵之多重量子井結構光伏元件通常在360nm處有最高的光轉換效率,因此我們希望也能觀察到具有360nm附近的發光峰值元件可以擁有較高的光伏效率。但是其效果不彰,最終所測得具有最高發光效率的元件是出現在藍光發光元件上。
另外,提升元件的操作溫度理應促成熱載子的影響程度上升,同時也應提升元件的光轉換效率。但是我們觀察到具有最高的光伏效率的溫度卻是出現在較低溫處,且效率隨著溫度的增加而逐漸下降。光致螢光的實驗中我們同樣可以看到類似的趨勢,對此我們也做了相關的分析。
最後我們發現藍光發光元件有最高的光轉換效率,且其效率峰值出現在較低溫處,其數值分別如下:1.56542 (%) 的光伏效率、76.5 (%) 的填充因子效率、2.581 (V) 的開路電壓、及1.220 x10-3 (mA/cm2) 的短路電流密度,其發生在90K溫度下。

Different Indium contents in InGaN/GaN multi-quantum well photovoltaic cell are fabricated by metal-organic chemical vapor deposition technique. The characteristics of cells in different temperature are investigated.
Decreasing the Indium content raises the well height and diminishes the cell emission wavelength. However, lowering down Indium content to fabricated cell whose light emission wavelength around 360nm does not give the fact that it can promote the efficiency, since the Gallium Nitride light absorption wavelength range is about 360nm. The highest efficiency is proved to exist in the blue emission cell.
Increasing the circumstance temperature urges the thermal carrier more actively and ought to own higher solar efficiency. However, the highest efficiency exists in low temperature and decreases with the rising temperature. Photoluminescence is related to this phenomenon and has similar tendency.
Finally we can find the blue emission cell has the largest solar cell efficiency and the highest efficiency exists under the lower temperature. Which has the efficiency of 1.56542 (%), fill factor of 76.5 (%), open-circuit voltage (Voc) of 2.581 (V), and short-cut current (Isc) of 1.220 x10-3 (mA/cm2) in the temperature 90K
URI: http://hdl.handle.net/11455/11390
其他識別: U0005-2307201315060500
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.