Please use this identifier to cite or link to this item:
標題: 製備含Al3+/ Li+鹼性離子水溶液滴定於玻璃基材成長鋰鋁層狀氫氧化物透明薄膜之特性分析研究
Preparation the ionized alkaline aqueous solution containing Al3+ and Li+ ions titration on glass substrate growth the transparent film of Li-Al layered double hydroxide
作者: 吳順傑
Wu, Shun-Chieh
關鍵字: 鋰-鋁層狀雙氫氧化物(Li-Al LDH);Li-Al Layered double hydroxide (Li-Al LDH);疏水性;熱蒸鍍法;四點探針;薄膜片電阻值;hydrophobic;thermal evaporation;four point probe;film sheet resistance
出版社: 材料科學與工程學系所
引用: 1. Y. Kuang, L. Zhao, S. Zhang, F. Zhang, M. Dong and S. Xu, Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures, Materials, 2010, 3, 5220-5235. 2. C. X. Zhao, Y. Liu, D. Y. Wang, D. L. Wang and Y. Z. Wang, Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol), Polymer Degradation and Stability, 2008, 93, 1323-1331. 3. M. Zammarano, M. Franceschi, S. Bellayer, J. W. Gilman and S. Meriani, Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based onlayered double hydroxides, Polymer, 2005, 46, 9314-9328. 4. F. Zhang, C. Z. Yuan, X. G. Zhang, L. J. Zhang and K. XU, 5-sulfosalicylic acid-assisted hydrothermal synthesis and supercapacitive properties of Co-Ni layered double hydroxides, Acta Physico-Chimica Sinica, 2010, 26, 3175-3180. 5. F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans and X. Duan, Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum, Angewandte Chemie International Edition, 2008, 47, 2466-2469. 6. F. Leroux and J. P. Besse, Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites, Chemistry of Materials, 2001, 13, 3507-3515. 7. F. Zhang, X. Xiang, F. Li and X. Duan, Layered double hydroxides as catalytic materials: recent development, Catal Surv Asia, 2008, 12, 253-265. 8. Y. Liu, K. Murata, T. Hanaoka, M. Inaba and K. Sakanishi, Syntheses of new peroxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol, Journal of Catalysis, 2007, 248, 277-287. 9. J. H. Choy, S. J. Choi, J. M. Oh and T. Park, Clay minerals and layered double hydroxides for novel biological applications, Applied Clay Science, 2007, 36, 122-132. 10. Y. You, H. Zhao and G. F. Vance, Adsorption of dicamba (3,6-dichloro-2-methoxy benzoic acid) in aqueous solution by calcined-layered double hydroxide, Applied Clay Science, 2002, 21, 217- 226. 11. F. Cavani, F. Trifirb and A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catalysis Today, 1991, 11, 173-301. 12. Y. You, G. F. Vance and H. Zhao, Selenium adsorption on Mg–Al and Zn–Al layered double hydroxides, Applied Clay Science, 2001, 20, 13–25. 13. V. Rives and M. A. Ulibarri, Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates, Coordination Chemistry Reviews, 1999, 181, 61–120. 14. M. A. Ulibarri, F. M. Labajos, V. Rives, R. Trujillano, W. Kagunya and W. Jones, Comparative study of the synthesis and properties of vanadate-exchanged layered double hydroxides, Inorganic Chemistry, 1994, 33, 2592-2599. 15. M. Ogawa and S. Asai, Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds, Chemistry of Materials, 2000, 12, 3253-3255. 16. J. He, M. Wei, B. Li, Y. Kang, D. G Evans and X. Duan, Preparation of layered double hydroxides, Struct Bond, 2006, 119, 89–119. 17. A. Vaccari, Preparation and catalytic properties of cationic and anionic clays, Catalysis Today, 1998, 41, 53-71. 18. S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu and E. Narita1, Direct intercalation of amino acids into layered double hydroxides by Co precipitation, Journa of Solid State Chemistry, 2001, 162, 52-62. 19. S. Carlino, M. J. Hudson, S. W. Husain and J. A. Knowles, The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide, Solid State Ionics, 1996, 84, 117-129. 20. E. D. Dimotakis and T. J. Pinnavaia, New route to layered double hydroxides intercalated by organic anions: precursors to polyoxometalate-pillared derivatives, Inorganic Chemistry, 1990, 29, 2393-2394. 21. Y. Wang, F. Zhang, S. Xu, X. Wang, D. G. Evans and X. Duan, Preparation of layered double hydroxide microspheres by spray drying, Industrial and Engineering Chemistry Research, 2008, 47, 5746-5750. 22. J. H. Lee, S. W. Rhee and D. Y. Jung, Selective layer reaction of layer-by-layer assembled layered double-hydroxide nanocrystals, Journal of the American Chemical Society, 2007, 129, 3522-3523. 23 K. Okamoto, T. Sasaki, T. Fujita and N. Iyi, Preparation of highly oriented organic-LDH hybrid films by combining the decarbonation, anion-exchange, and delamination processes, Journal of Materials Chemistry, 2006, 16, 1608-1616. 24. Z. Lu, F. Zhang, X. Lei, L. Yang, S. Xu and X. Duan, In situ growth of layered double hydroxide films on anodic aluminum oxide/ aluminum and its catalytic feature in aldol condensation of acetone, Chemical Engineering Science, 2008, 63, 4055-4062. 25. E. Gardner, K. M. Huntoon and T. J. Pinnavaia, Direct synthesis of alkoxide-intercalated derivatives of hydrotalcite-like layered double hydroxides: precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films, Advanced Materials, 2001, 13, 1263-1266. 26. J. Lui, Y. Li, X. Huang, G. Li and Z. Li, Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes, Advanced Functional Materials, 2008, 18, 1448-1458. 27. J. Y. Uan, J. K. Lin and Y. S. Tung, Direct growth of oriented Mg-Al layered double hydroxide film on Mg alloy in aqueous HCO3-/CO32- solution, Journal of Materials Chemistry, 2010, 20, 761-766. 28. J. Liu, X. Huang, Y. Li, K. M. Sulieman, X. He and F. Sun, Facile and large-scale production of ZnO/Zn-Al layered double hydroxide hierarchical Heterostructures, Journal of Physical Chemistry B, 2006, 110, 21865-21872. 29. M. C. Lin, F. T. Chang and J. Y. Uan, Synthesis of Li-Al-carbonate layered double hydroxide in a metal salt-free system, Journal of Materials Chemistry, 2010, 20, 6524-6530. 30. V. R. L. Constantino and T. J. Pinnavaia, Basic properties of Mg2+1-xAI3+x layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions, Inorganic Chemistry, 1995, 34, 883-892. 31. M. A. Travassos and C. M. Rangel, Corrosion inhibition of aluminium alloys by layered double hydroxides: the role of copper, Paço do Lumiar, 22, 1649-038. 32. J. K. Lin, K. L. Jeng and J. Y. Uan, Crystallization of a chemical conversion layer that forms on AZ91D magnesium alloy in carbonic acid, Corrosion Science, 2011, 53, 3832-3839. 33. M. Z. bin Hussein, A. H. Yahaya, M. Shamsul, H. M. Salleh, T. Yap and J. Kiu, Acid fuchsin-interleaved Mg–Al-layered double hydroxide for the formation of an organic–inorganic hybrid nanocomposite, Materials Letters, 2004, 58, 329-332. 34. M. del Arco, S. Gutierrez, C. Martin, V. Rives and J. Rocha, Effect of the Mg:Al ratio on borate (or silicate) / nitrate exchange in hydrotalcite, Journal of Solid State Chemistry, 2000, 151, 272-280. 35. M. A. Aramendia, Y. Aviles, V. Borau, J. M. Luque, J. M. Marinas, J. R. Ruiz and F. J. Urbano, Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: a spectroscopic study, Journal of Materials Chemistry, 1999, 9, 1603–1607. 36. A. R. Yacob, M. K. A. A. Mustajab and N. S. Samadi, Calcination temperature of Nano MgO effect on base transesterification of palm oil, World Academy of Science, Engineering and Technology, 2009, 56, 408-412. 37. K. H. Goh, T. T. Lim and Z. Dong, Application of layered double hydroxides for removal of oxyanions: A review, Water Research, 2008, 42, 1343-1368. 38. C. Forano, T. Hibino, F. Leroux and C. T. Gueho, Handbook of Clay Science, Elsevier Ltd, 2006, 1021-1095. 39. S. Britto and P. V. Kamath, Thermal, solution and reductive decomposition of Cu–Al layered double hydroxides into oxide products, Journal of Solid State Chemistry, 2009, 182, 1193-1199. 40. H. Chen, Q. D. Ling, W. G. Zhang and Z. H. Lin, Luminescent drug-containing hydrotalcite-like compound as a drug carrier, Chemical Engineering Journal, 2012, 185-186, 358-365. 41. M. Borja and P. K. Dutta, Fatty acids in layered metal hydroxides: membrane-like structure and dynamlcs, Journal of Physical Chemistry, 1992, 96, 5434-5444. 42. K. A. Tarasov and D. O’Hare, Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide, Inorganic Chemistry, 2003, 42, 1919-1927. 43. M.R. Othman, N.M. Rasid and W.J.N. Fernando, Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption, Chemical Engineering Science, 2006, 61, 1555- 1560. 44. W. Xie, H. Peng and L. Chen, Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, Journal of Molecular Catalysis A: Chemical, 2006, 246, 24–32.
本實驗是利用鋰鋁介金屬化合物(AlLi IMC)與去離子水,製備出含有Al3+/ Li+之鹼性離子水溶液,利用水溶液以滴定及直接浸置的方式,並藉由大氣環境中二氧化碳溶於水溶液而提供的CO32-離子,控制不同的溫度、滴定量或浸置方式讓其自然反應及定時反應,於玻璃基材上成長鋰-鋁層狀雙氫氧化物(Li-Al Layered double hydroxide)透明薄膜,後續稱為Li-Al LDH。由SEM結果顯示於玻璃基層上所長成的Li-Al LDH薄膜都甚為均勻,Li-Al LDH片狀結構尺寸均隨著溶液溫度、滴定量的增加而變大。在各溫度下滴定定時反應40分鐘後即可長出Li-Al LDH薄膜,且能明顯的使球狀結構數量減少,在溫度為5 ℃所長成的Li-Al LDH透明薄膜於可見光波長範圍的穿透率可達99 %以上,且表面疏水性明顯提高並優於原玻璃基材。另當以熱蒸鍍法蒸鍍鋁膜並沉積於Li-Al LDH薄膜上方時,藉由四點探針薄膜電阻量測結果顯示,其電流傳導因路徑增加,薄膜片電阻值亦隨之增加。

This study prepared the ionized alkaline aqueous solution containing Al3+ and Li+ ions by mixing lithium-aluminum intermetallic compounds (AlLi IMC) with DI-water. The surface of glass substrate was covered with the aqueous solution by the method of titration and immersion. The growth of the transparent film of lithium-aluminum layered hydroxide (Li-Al layered double hydroxide, hereafter Li-Al LDH) on the glass substrate was generated by the reaction of the Al3+ and Li+ -containing alkaline aqueous solution with CO32- ion from carbon dioxide in atmosphere. The type of reactions could be spontaneous or timing effect, which can be controlled by different temperature setup, amount of solution in titration, or the immersion method. The results show the Li-Al LDH films on the glass substrate are very uniform by the SEM examination. The Li-Al LDH sheet size increases with the increasing solution temperature and amount of solution in titration. It shows that the Li-Al LDH films can be developed after 40 minutes of titration at different temperatures and the number of the bulb structure can be reduced apparently. Especially in the temperature of 5 ℃, the Li-Al LDH film demonstrates high transmission rate up to 99 % in the visible wavelength range and surface hydrophobic is markedly improved and better than that of the original glass substrate. When the thermal evaporation aluminum vapor was deposited on the Li-Al LDH film, it shows that the current conduction path increases and the film sheet resistance also increase.
其他識別: U0005-1008201213320100
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.