Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11466
標題: 製備高分散性白金電極觸媒應用於質子交換膜燃料電池與全釩儲能電池技術研究
Synthesis of highly dispersed Pt electrocatalyst and its applications in PEMFC and VRFB
作者: 黃榮鑫
Huang, Rong-Hsin
關鍵字: 鉑/碳基材料 電極觸媒;Platinum/carbon-base electrocatalyst;質子交換膜燃料電池;陽離子型界面活性劑(CTAB);全釩液流儲能電池;活性觸媒層;V(III)價/V(IV)價氧化還原反應;V(IV)價/V(V)價氧化還原反應。;Proton exchange membrane fuel cells;Cetyltrimethyl ammonium bromide;vanadium redox flow battery;platinum/multiwalled carbon nanotube;V(III)/V(IV) redox reaction;V(IV)/V(V) redox reaction;activity catalyst layer
出版社: 材料科學與工程學系所
引用: Chapter-1 References [1] S. Fawkes, Outsourcing Energy Management: Saving Energy and Carbon through Partnering, 2007, Hampshire: Gower Publishing. [2] S. J. Hansen, P. Lanqlois, P. Bertoldi, ESCOs Around the World, 2009, Washington: CRC Press. [3] E. Shin, The impact of the first oil crisis on energy demand in Korea, Energy Economics, 1982, October, p259. [4] G. Weightman, What the industrial revolution did for us, 2003, London: BBC. [5] A. Mawire, M. McPherson, R. R. J. Van den Heetkamp, Solar Energy Materials & Solar Cells, 92 (2008) 1668. [6] D. A. Chwieduk, Solar Energy, 82 (2008) 870. [7] C. G. Granqvist, Solar Energy Materials & Solar Cells, 91 (2007) 1529. [8] D. O. J. Murphy, G. D. Hitchens and D. J. Manko, J. Power Sources, 47 (1994) 353. [9] M. L. Perry, T. F. Fuller, J. Electrochem. Soc., 149 (2002) S59. [10] A. Arico, S. Srinivasan, S. V. Antonucci, Fuel Cells, 2 (2001) 1. [11] B. D. McNicol, D. A. Rand, K. R. Williams, J. Power Sources, 83 (1999) 15. [12] C. Wang, M. Shim, P. G. Sionnest, Science, 291 (2001) 2390. [13] C. R. M. Kagan, C. D. Dimitrakopoulos, Science, 286 (1999) 945. [14] K. B. Prater, J. Power Sources, 61 (1996) 105. [15] J. Chen, T. Matsuura and M. Hori, J. Power Sources, 131 (2004) 155. [16] R. Beneito, J. Vilaplana and S. Gisbert, Int. J. Hydrogen Energy, 32 (2007) 1554. [17] K. Sopin, W. Daud, Renewable Energy, 31 (2006) 719. [18] 衣寶廉,燃料電池-原理與應用,2005,五南圖書出版社。 [19] 黃鎮江,燃料電池,2005,全華科技圖書公司。 [20] 肖鋼,燃料電池技術,2010,全華科技圖書公司。 [21] 白益豪,“奈米薄膜電極體材料最佳化製程技術愈特性研究”博士論文,中興大學材料科學與工程研究所, 民96。 [22] Mond L., Langer C. Proceeding of the Royal Society of London, 46 (1889) 296. [23] 周志誠,“黏土分散劑應用於燃料電池觸媒層”博士論文,中興大學化學工程研究所, 民96。 [24] J. H. Hirschenhofer, D. E. Stauffer, R. R. Engleman and M. G. Klett, Fuel Cell Handbook 4th Edition, U.S. Department of Commerce, 1998, Springfield, VA. [25] Y. Zhang, X. Huang, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha, Compd., 428, 31 (2007) 302. [26] J. Larminite, A. Dicks, Fuel Cell System Explained, John Wiley & Sons, Ltd, Chichester, 2000, England. [27] C. Rayment and S. Sherwin, Introduction of Fuel Cell Technology, Department of Aerospace and Mechanical Engineering University of Notre Dame, 2003. [28] 趙文愷,“利用物理氣相沉積技術與超音波震盪技術添加可施性金屬氧化物與金屬科立於陽極觸媒層中對於質子交換膜燃料電池效能的影響”博士論文,中興大學材料科學與工程研究所, 民100。 [29] S. Litster, G. McLean, J. Power Sources, 130 (2004) 61. [30] X. Ren, S. Gottesfeld, J. Electrochem. Soc., 148 (2001) 87. [31] G. Karimi, X. Li, J. Power Sources, 140 (2005) 1. [32] E. P. Giannelis, Appl. Organometal. Chem., 12 (1998) 675. [33] U. Pasaogullari, C. Y. Wang, J. Electrochem. Soc., 148 (2001) 399. [34] N. Djilali, D. Lu, Int. J. Therm. Sci., 41 (2002) 29. [35] J. Chen, T. Matsuura, M. Hori, J. Power Sources, 131 (2004) 155. [36] G. S. Wilson, M. Raja, S. Parthasarathy, Electrochim. Acta, 40 (1995) 285. [37] K. A. Starz, E. Auer, Th. Lehamann, R.Zuber J. Power Sources, 84 (1999) 167. [38] W. T. Grubb, Proceeding of the 11th Annual battery Research and Development Conference, PSC Publications Commiyyee, Red bank, NJ, (1957); U. S. Patent No. 2,913,511 (1959). [39] A. Sacca, A. Carbone, E. Passalacqua, A. D’Epifanio, S. Licoccia, E. Traversa, E. Sala, F. Traini and R. Ornelas, J. Power Sources, 152 (2005) 16. [40] F. N. Buchi, D. Tran, S. Srinivassan, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, the Electrochemical Society, Inc., Pennington, NJ, (1995) 226. [41] W. H. Buck, Proceedings of the Power Sources Conference (37th), Army Research Lab., Fort Monmouth, (1996) 104. [42] T. A. Zawodzinski, J. Milliken, 2002 Fuel Cell Seminar, Palm Springs, CA, (2002) 870. [43] N. Steinera, P. Mocoteguy, D. Candusso, D. Hissel, A. Hernandez, and A. Aslanides, J. Power Sources, 183 (2008) 260. [44] 行政院國家科學委員會補助專題研究計畫:氧化還原儲能電池系統 NO:NSC 97-2623-7-239-007-ET. [45] S. Ashimura and Y. Miyake, Denki Kagaku, J. Power Sources, (1971) 39, 977. [46] S. Ashimura. and Y. Miyake, Denki Kagaku, J. Power Sources, (1971) 43, 214. [47] S. Ashimura and Y. Miyake, Denki Kagaku, J. Power Sources, (1971) 44, 50. [48] G.Oriji, Y. Katayama, and T. Miura, J. Power Sources, (2005) 139, 321. [49] G. Ciprios, W. Erstoine, and P. G. Grimes (Exxon/GRU, 1, 77-V, 1 and Exxon/GRU. 2, BH, 77-V) NASA contract Rep. No.NAS3-135-206, (1977), Vols. 1&2. [50] J. Giner, L. Swette, and K. Cahill, NASA Contract NAS3-19760, (1976), NASA CR-134705 [51] L. H. Thaller, Redox Flow Cell Development and Demonstration Project, NASA TM-79067, National Aeronautics and Space Administration, U.S. Dept. of Energy, (1979). [52] L. H. Thaller, NASA TM-79143, National Aeronautics and Space Administration, U.S. Dept. of Energy, (1979). [53] M. A. Reid, and R. F. Gahn, NASA TMX-73669, National Aeronautics and Space Administration, U.S. Dept. of Energy, (1977) [54] E. Sum, and M. Skyllas-Kazacos, J. Power Sources,(1985) 15 179. [55] E. Sum, M. Rychcik, and M. Skyllas-Kazacos, J. Power Sources, (1985) 16 85. [56] M. Skyllas-Kazacos, M. Rychcik, and R. Robins, J Electrochem Soc., (1986) 133 1057. [57] Ponce de Le′ on C., Fr′is-F. A., Gonzalez-G. J., Szanto D.A. and Walsh F.C., J. Power Sources, (2006) 160, 716. [58] A. Price, S. Bartley, S. Male, and G. Cooley, Power Eng. J., 13 (1999) 122. [59] P. Morrissey, Int. J. Ambient Energy ,21 (2000) 213. [60] A. Price, S. Male, M. Kleimaier, VDI Berichte 1734 (2002) 47; [61] R. Zito, Process for energy storage and/or power delivery with means for restoring electrolyte balance; US Patent 5,612,148 (March 1997). [62] R.J. Remick, and P.G.P. Ang, Electrically rechargeable anionically active reduction-oxidation electrical storage supply system; US Patent 4,485,154 (November 1984). [63] M. Skyllas-Kazacos, A. Mousa, andM. Kazakos, PCT Application, PCT/GB2003/001757,2003. [64] M. Skyllas-Kazacos, Y. Limantari, J. Appl. Electrochem, 34 (2004) 681. [65] M. Skyllas-Kazacos, J. Power Sources, 124 (2003) 299. [66] M. Skyllas-Kazacos, M. Rychick, R. Robins, All-vanadium redox battery, US Patent 4,786,567 (November 1988). [67] E. Sum, and M. Skyllas-Kazacos, J. Power Sources, 15 (1985) 179. [68] E. Sum, M. Rychcik, andM. Skyllas-Kazacos, J. Power Sources, 16 (1985) 85. [69] H. S. Lim, A. M. Lackner, and Knechtli, J. Electrochem. Soc., 124 (1977) 1154. [70] High Capacity Electrical Storage & Power Conditioning Units, Available at: <URL: http://plurionsystems.com> (accessed September 27, 2005). [71] R. L. Clarke, B.J. Dougherty, S. Harrison, J. P. Millington, Battery with bifunctional electrolyte. United States Patent Application, International publication number: WO 2004/095602 A2, November 4, 2004.. [72] J.P. Schrodt,W.T. Otting, J.O. Schoegler, and D.N. Craig, Trans. Electrochem. Soc. 90 (1946) 405. [73] J.C. White,W.H. Powers, R.L. McMutric, and R.T. Pierce, Trans. Electrochem. Soc. 91 (1947) 1947. [74] G.D. McDonald, E.Y. Weissman, and T.S. Roemer, J. Electrochem. Soc. 119 (1972) 660. [75] F. Beck, US Patent 4,001,037 (1977). [76] R. Wurmb, F. Beck, K. Boehlke, US Patent 4,092,463 (1978). [77] P.O. Henk, Z.A.A. Piontkowski, US Patent 4,331,744 (1982). [78] P.O. Henk, US Patent 4,400,449 (1983). [79] A. Hazza, D. Pletcher, and R. Wills, Phys. Chem. Chem. Phys., 6 (2004) 1773. [80] D. Pletcher, and R. Wills, Phys. Chem. Chem. Phys., 6 (2004) 1779. [81] D. Pletcher, and R. Wills, J. Power Sources, 149 (2005) 96. [82] A. Hazza, D. Pletcher, and R. Wills, J. Power Sources, 149 (2005) 103. [83] K. L. Huang, X.G. Li, S. Q Liu, N. Tan, L. Q. Chen, Renewable Energy, 33 (2008) 186. [84] N. Tokuda, et. Al., SEI technical review, 50 (2000) 88. [85] M. Kazacos, and M. Skyllas-Kazacos, J. Electrochem. Soc. 136 (1989) 2759. [86] 董全峰, 張華民, 液流電池研究進展, 電化學, (2005) [87] Ryukyu Electric Power Co.,Ltd., VANASAVER, (2008), http://www.ryukyu-denryoku.co.jp/VANASAVER2E02529.pdf [88] P. V. Shanahan, L. Xu, C. Liang, M. Waje, S. Dai, and Y. Yan, J. Power Sources, 185 (2008) 423. [89] X. Wang, W. Li, Z. Chen, M. Waje, and Y. Yan, J. Power Sources, 158 (2006) 154. [90] K. W. Park and K. S. Seol, Electrochem. Commun., 9 (2007) 2256. [91] S. Zhang, X. Z. Yuan, J. N. C. Hin, and H. Wang, J. Power Sources, 194 (2009) 588. [92] X. Yu and S. Ye, J. Power Sources, 172 (2007) 145. [93] Z. Qi, C. He, and A. Kaufman, J. Power Sources, 111 (2002) 239. [94] J. H. Wee and K. Y. Lee, J. Power Sources, 157 (2006) 128. [95] R. J. Behm and Z. Jusys, J. Power Sources, 154 (2006) 327. [96] J. Ihonen, M. Mikkola, and G. Lindbergh, J. Electrochem. Soc., 151 (2004) A1152. [97] E. D. Wang, P. F. Shi, and C. Y. Du, J. Power Sources, 175 (2008) 183. [98] J. P. Owejan, J. J. Gagliardo, J. M. Sergi, S. G. Kandlikar, and T. A. Trabold, Int. J. Hydrogen Energy, 34 (2009) 3436. [99] T. Colinart, A. Chenu, S. Didierjean, O. Lottin, and S. Besse, J. Power Sources, 190 (2009) 230. [100] S. Litster, C. R. Buie, T. Fabian, J. K. Eaton, and J. G. Santiagoz, J. Electrochem. Soc., 154 (2007) B1049. [101] N. Karst, V. Faucheux, A. Martinent, P. Bouillon, J. Y. Laurent, F. Druart, and J. P. Simonato, J. Power Sources, 195 (2010) 1156. [102] M. Eikerling, J. Electrochem. Soc., 153 (2006) E58. [103] A. Sacca, A. Carbone, E. Passalacqua, A. D’Epifanio, S. Licoccia, E. Traversa, E. Sala, F. Traini, and R. Ornelas, J. Power Sources, 152 (2005) 16. [104] Q. Yan, H. Toghiani, and J. Wu, J. Power Sources, 158 (2006) 316. [105] F. B. Weng, A. Su, C. Y. Hsu, and C. Y. Lee, J. Power Sources, 157 (2006) 674. [106] W. K. Chao, C. M. Lee, D. C. Tsai, C. C. Chou, K. L. Hsueh, and F. S. Shieu, J. Power Sources, 185 (2008) 136. [107] M. Waje, X. Wang, W. Li, and Y. Yan, Nanotechnology, 16 (2005) S395. [108] M. Chen and Y. Xing, Langmuir, 21(20) (2005) 9334. [109] H. Y. Li, H. Z. Chen, J. Z. Sun, J. Cao, Z. L. Yang, and M. Wang, Maxroml Rapid Commun, 24(12) (2003) 715. [110] S. J. Park, K. S. Cho, and S. K. Ryu, Carbon, 41(7) (2003) 1437. [111] H. J. Spinelli, Adv. Mater, 10(15) (1998) 1215. [112] Y. H. Pai, J. H. Ke, H. F. Huang, C. M. Lee, J. M. Zen, and F. S. Shieu, J. Power Sourse, 161 (2006) 275. [113] X. Wang, I. Hsing, Electrochim. Acta 47 (2002) 2981. [114] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources 105 (2002) 13. [115] L.B. Okhlopkova, A.S. Lisitsyn, V.A. Likholobov, M. Gurrath, H.P. Boehm, Appl. Catal. A: Gen. 204 (2000) 229. [116] P. Yu, M. Pemberton, P. Plasse, J. Power Sources 144 (2005) 11. [117] J. Prabhuram, X. Wang, C. L. Hui, I. M. Hsing, J. Phys. Chem. B 107 (2003) 11057. [118] J. H. Zhou, J. P. He, Y. J. Ji, W. J. Dang, X. L. Liu, G. W. Zhao, C. X. Zhang, J. S. Zhao, Q. B Fu, and HP Hu, Electrochim. Acta, 2007, 52, 4691–4695 [119] C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Chem. Mater. 17 (2005) 3297. [120] W. Yan, S.M. Mahurin, Z. Pan, S.H. Overbury, S. Dai, J. Am. Chem. Soc.127 (2005) 10480. [121] Y. Takasu, T. Kawaguchi, W. Sugimoto, and Y. Murakami, Electrochimica Acta, 48 (2003) 3861. [122] G. Chena, A. Delafuente, S. Sarangapani, and E. Thomas, Catalysis Today, 67 (2001) 341. [123] R. Venkataraman, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 150 (2003) A278. [124] K. T. Kim, Y. G. Kim, and J. S. Chung, J. Electrochem. Soc., 142 (1995) 1531. [125] H. Wendt, Electrochim. Acta, 31 (2001) 3637. [126] K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee and, Y. E. Sung, J. Phys. Chem. B., 106 (2002) 1869. [127] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, Electrochim. Acta, 40 (1995) 355. Chapter-2 References [1] K.B. Prater, J. Power Sources, 61 (1996) 105. [2] D.O.J. Murphy, G.D. Hitchens, D.J. Manko, J. Power Sources, 47 (1994) 353. [3] R. Beneito, J. Vilaplana, S. Gisbert, Int. J. Hydrogen Energy, 32 (2007) 1544. [4] J. Chen, T. Matsuura, M. Hori, J. Power Sources, 131 (2004) 155. [5] G. Hoogers, Fuel Cell Technology Handbook, CRC Press, Boca Raton, FL, 2003. [6] Y.H. Pai, J.H. Ke, C.C. Chou, J.J. Lin, J.M. Zen, F.S. Shieu, J. Power Sources, (2006) 398. [7] C.L. Hui, X.G. Li, I.-M. Hsing, Electrochim. Acta, 51 (2005) 711. [8] S. Song, Y. Wang, P.K. Shen, J. Power Sources, 170 (2007) 46. [9] P. Yu, M. Pemberton, P. Plasse, J. Power Sources, 144 (2005) 11. [10] C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Chem. Mater., 17 (2005) 3297. [11] W.F. Yan, S.M. Mahurin, Z.W. Pan, S.H. Overbury, S. Dai, J. Am. Chem. Soc., 127 (2005) 10480. [12] H. Spinelli, Adv. Mater., 10 (1998) 1215. [13] J. Yu, N. Grossiord, C.E. Koning, J. Loos, Carbon, 45 (2007) 618. [14] J. Prabhuram, X. Wang, C.L. Hui, I.M. Hsing, J. Phys. Chem. B, 107 (2003) 11057. [15] J.H. Zhou, J.P. He, Y.J. Ji, W.J. Dang, X.L. Liu, G.W. Zhao, C.X. Zhang, J.S. Zhao, Q.B. Fu, H.P. Hu, Electrochim. Acta, 52 (2007) 4691. [16] Y.Y. Song, Y. Li, X.H. Xia, Electrochem. Commun., 9 (2007) 201. [17] W.K. Chao, C.M. Lee, S.Y. Shieu, C.C. Chou, F.S. Shieu, J. Power Sources, 185 (2008) 136. [18] S. Han Wu, D.H. Chen, J. Colloid Interface Sci., 273 (2004) 165. [19] S.G. Song, Y. Wang, P.K. Shen, J. Power Sources, 170 (2007) 46. [20] J. Zeng, J.Y. Lee, W. Zhou, Appl. Catal. A: Gen., 308 (2006) 99. [21] M. Chen, Y.C. Xing, Langmuir, 21 (2005) 9334. [22] F. Su, J. Zeng, X. Bao, Y. Yu, J.Y. Lee, X.S. Zhao, Chem. Mater., 17 (2005) 3960. [23] F. Maillard, M. Martin, F. Gloaguen, Electrochim. Acta, 47 (2002) 3431. [24] G. Tamizhmani, J.P. Dodelet, D. Guay, J. Electrochem. Soc., 143 (1996) 18. [25] W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, Q. Xin, Electrochim. Acta, 49 (2004) 1045. [26] H.Q. Li, G.Q. Sun, N. Li, S.G. Sun, D.S. Su, Q. Xin, J. Phys. Chem. C, 111 (2007) 5605. [27] R. H. Huang, W. K. Chao, R. S. Yu, K. L. Hsueh, F. S. Shieu, J. Power Sources, 205 (2012) 93. Chapter-3 References [1] M. Skyllas-Kazacos, J. Power Sources 15 (1985) 179. [2] M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, and A. G. Fane, J. Electrochem soc. 133 (1986) 1057. [3] M. Skyllas-Kazacos, and F. Grossmith, J. Electrochem soc. 134 (1987) 2950. [4] M. Rychcik, and M. Skyllas-Kazacos, J. Power Sources 22 (1988) 59. [5] G. Oriji, Y. Katayama, and T. Miura, J Power Sources 139 (2005) 321. [6] C.J. Rydh, and B.A. Sanden, Energy Convers. Manage. 46 (2005) 1980. [7] K.L. Huang, X.G. Li, S.Q. Liu, N. Tan, and L.Q. Chen, Renewable Energy 33 (2008) 186. [8] L. Yue, W.S. Li, F.Q. Sun, L.Z. Zhao, and L.D Xing, Carbon 48 (2010) 3079. [9] C. Fabjan, J. Garche, B. Harrer, L. Jorissen, C. Kolbeck, F. Philippi, G. Tomazic, and F. Wagner, Electrochem Acta 47 (2001) 825. [10] B. Sun, and M. Skyllas-Kazacos, Electrochimica Acta 37 (1992) 1253. [11] B. Sun, and M. Skyllas-Kazacos, Electrochimica Acta 37 (1992) 2459. [12] P.X. Han, H.B. Wang, Z.H. Liu, X. Chen, W.Ma, J.H. Yao, Y.W. Zhu, and G.L. Cui, Carbon 49 (2011) 693. [13] S. Li, K.L. Huang, S.Q. Liu, D. Fang, X.W. Wu, D. Lu, and T. Wu, Electrochimica Acta 56 (2011) 5483. [14] Y.Y. Shao, X.Q. Wang, M. Engelhard, C.M. Wang, S. Dai, J. Liu, Z.G. Yang, and Y.H. Lin, J Power Sources 195 (2010) 4375. [15] E. J. Baur, and T. W. Spain, Spectrochim. Acta Part B: Atomic Spectrosc. 57 (2002) 2017. [16] W.H. Wang, and X.D. Wang, Electrochimica Acta 52 (2007) 6755. [17] Y.H. Wen, J. Cheng, P.H. Ma, and Y.S. Yang, Electrochimica Acta 53 (2008) 3514. [18] Folkesson B&ouml;rje, and Larsson Ragnar, Inorganica Chimica Acta 162 (1989) 75. [19] B. Sun, and M. Skyllas-Kazacos, Electrochimica Acta 36 (1991) 513. [20] Rong-Hsin Huang, Wen-Kai Chao, Ruei-Sung Yu, Kan-Lin Hsueh, and Fuh-Sheng Shieua, J. Power Sources 205 (2012) 93. [21] W. K. Chao, C.M. Lee, S.Y. Shieu, C.C. Chou, and F.S. Shieu, J. Power Sources 185 (2008) 136. [22] JP Patent, 2001216974, (2001). [23] P. Qian, H. Zhang, J. Chen, Y.H. Wen, Q.T. Luo, Z.H. Liu, D.J. You, and B.L. Yi, J. Power Sources 175 (2008) 613. [24] J.H. Zhou, J.P. He, Y.J. Ji, W.J. Dang, X.L. Liu, G.W. Zhao, C.X. Zhang, and J.S. Zhao, Q.B. Fu, H.P. Hu, Electrochim. Acta 52 (2007) 4691. [25] S.G. Song, Y. Wang, and P.K. Shen, J. Power Sources 170 (2007) 46. [26] J. Zeng, J.Y. Lee, and W. Zhou, Appl. Catal. A: Gen. 308 (2006) 99. [27] H.Q. Li, G.Q. Sun, N.Li, S.G. Sun, D.S. Su, and Q.Xin, J. Phys. Chem. C 111 (2007) 5605. [28] A. Leela Mohana Reddy, and S. Ramaprabhu, Inter. J. Hydrogen Energy 32 (2007) 3998. [29] G. Tamizhmani, J.P. Dodelet, and D. Guay, J. Electrochem. Soc. 143 (1996) 18. [30] W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, and Q. Xin, Electrochim. Acta 49 (2004) 1045. [31] A.J. Bard, and L.R. Faulkner. Electrochemical methods – fundamentals and applications. 2nd ed. NewYork:Wiley; 226 (2001). [32] C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D. A. Szanto, and F. C. Walsh, J. Power Sources 160 (2006) 716. [33] Y.Xu, Y.H. Wen, J. Cheng, G.P. Cao, and Y.S. Yang. Electrochim Acta 55 (2010) 715. [34] P.X. Han, H.B. Wang, Z.H. Liu, X. Chen, W.Ma, and J.H. Yao, Y.W. Zhu, G.L. Cui, Carbon 49 (2011) 693. [35] Y.H. Wen, H.M. Zhang, P. Qian, H.T. Zhou, P. Zhao, and B.L. Yi, et al. Electrochim Acta 51 (2006) 3769. [36] H.Q. Zhu, Y.M. Zhang, L. Yue, W.S. Li, G.L. Li, D. Shu, and H.Y. Chen, J. Power sources 184 (2008) 637. [37] R.H. Huang, C.H. Sun, T.M. Tseng, W.K. Chao, K.L. Hsueh, and F. S. Shieu, J. Electrochem. Soc. 159 (2012) A1.
摘要: 
對於電池而言,電極是電池工作產生電力的基本原件,對於燃料電池電極而言,電極觸媒更是電極發生化學反應轉換電能的重要角色,觸媒扮演著燃料的氧化與還原的催化劑,電極的結構與狀態是整個電池發生電化學反應的場所,因此擔載觸媒的多孔隙結構與觸媒的分散狀態相對於在質子交換膜燃料電池工作過程中,無疑的,觸媒的效能左右著整個質子交換膜燃料電池的效率與穩定性,由此,製備高分散與高效能的電極觸媒將成為關鍵性要素。在此論文中,高分散的Pt觸媒製備技術是使用化學含浸還原法搭配熱回流裝置,使用容易取得的陽離子型界面活性劑(CTAB) 十六烷基三甲基溴化銨,當分散劑,最後使用低溫高壓熱鍜燒技術清除劑面活性劑,使得Pt 奈米觸媒能夠發揮其最佳功效。
本論文包含兩個子主題,其涵蓋了Pt奈米材料製程、材料的物理分析與電化學分析,進一步的應用於質子交換膜燃料電池與全釩液流儲能電池系統。第一個子主題著重於高分散性的鉑/碳黑奈米電極觸媒粒子製備與開發,並應用於質子交換膜電池當其高效能的電極觸媒。電極觸媒粒子的製備上使用傳統的含浸法搭配陽離子型界面活性劑(CTAB)當碳黑與鉑金的分散劑,針對三種不同濃度的界面活性劑4.12×10-2 M、2.75×10-2 M 與1.37×10-2 M輔助製備高分散性的鉑奈米粒子,再利用新開發的低溫高壓鍜燒技術移除界面活性劑,讓鉑奈米粒子能夠在高分散狀態展現其最佳效能。隨著使用分散劑量的增加,透過穿透式電子顯微鏡的觀察,鉑奈米粒子的粒徑由2.3 nm,2.5 nm,2.7 nm隨之增大,且均勻的被分散於碳黑上,進一步的利用電化學技術來分析本製程製備的鉑電極觸媒的活性面積與效能並與目前商用的電極觸媒作善意的比較,本實驗製程所製備的鉑電極觸媒,其最佳效能高出商用觸媒約13%,其處於在甲醇與硫酸混合電解液的環境下也與商用觸媒具有相當穩定的性質。經由等量的鉑觸媒塗層,單電池測試結果顯示,於常溫25 ◦C 與高溫75 ◦C下,鉑觸媒Pt/C-4.12 (Pt size=2.7 nm)所製備的膜電極MEA-1具有最佳的電池效能,並且在25 ◦C與75 ◦C兩個操作溫度下,電池效能分別高出商用的40.9% 與45.4%,此意味著本製程所製備的鉑觸媒極具應用於質子交換膜燃料電池系統的潛力。第二個子主題則著重於使用第一主題所開發的高分散性Pt電極觸媒分散技術製備高效能的奈米鉑/多壁奈米碳管電極觸媒,並嘗試的應用於全釩液流儲能電池系統中,探討當其活性電極觸媒層的可能性。於電化學分析中發現使用鉑電極於含有四價釩的硫酸溶液中可促進四價釩與三價釩的氧化還原對發生及可促進四價釩與五價釩的氧化還原電流的提升,並進一步的將高效能的奈米鉑/多壁奈米碳管電極觸媒使用於全釩電池系統中,將奈米鉑/多壁奈米碳管電極觸媒設計塗層於陰極活性電極層上當活性觸媒層,並於陰陽兩極均使用相同的含有四價釩的硫酸電解液進行充放電測試,發現此設計形成三價釩/五價釩的氧化還原液流電池,同時也印證了電化學分析中的四價釩與三價釩的氧化
還原反應的存在。相反的,在相同的實驗條件下,純碳的活性電極則無此功能。另將奈米鉑/多壁奈米碳管電極觸媒塗層於陽極活性電極層上當活性觸媒層使用於傳統的二價釩/五價釩的氧化還液流電池中,很明顯的有使用觸媒的全釩電池效能比沒使用的電池高出約8%,由上述兩項使用鉑活性觸媒結果可知,在全釩液流電池系統中使用鉑活性觸媒層是可行,然而這在於經濟效益的考量上似乎也是一大考驗,期許於未來的研究上能夠找尋出的低價位的活性金屬觸媒來促進全釩液流電池效能上的提升。
由以上兩個子主題結果可得知,一個良好的分散技術可讓高分散的鉑觸媒發揮其最大的功效,並且可廣泛的應用於使用鉑當觸媒的能源領域。

An electrode is a basic device that generates battery power. Platinum electrocatalysts assist in the redox reaction of fuels for proton exchange membrane (PEM) fuel cells in separated electrodes. When a membrane electrode assembly is combined with porous electrocatalyst support, high dispersal of Pt catalyst and membrane, the performance and the durability of catalysts substantially affect the capacity, efficiency, and the stability of PEM fuel cells. The preparation of the high dispersal and performance of a Pt/C catalyst is a key factor in good cell performance. In this dissertation, the high dispersal of a Pt/C and a Pt/MWNT electrode catalyst was synthesized with a reflux device by impregnation method. The commercially and readily available cationic surfactant cetyltrimethylammonium bromide (CTAB) was used as dispersant. The low temperature and the high vacuum pressure of calcination removed the CTAB, and the performance of the Pt catalyst was improved.
The dissertation focuses on the topics of Pt material synthesis, nanotechnology, physical and electrochemical characteristics of Pt material, and application of Pt electrocatalyst material to the proton exchange membrane (PEM) fuel cell and the vanadium redox flow battery (VRFB) system. The first objective of this dissertation is to prepare the high dispersion of a Pt electrocatalyst to improve its efficiency and hence enhance the performance of PEM fuel cells. As a dispersant, CTAB has three concentrations (4.12×10-2, 2.75×10-2, and 1.37×10-2 M) that are necessary in the preparation of the high dispersal of Pt/C electrocatalysts (Pt/C-4.12, Pt/C-2.75, and Pt/C-1.37) via calcination to remove the CTAB and hence obtain good performance of the Pt/C catalyst. In this study, transmission electron microscopy analysis showed that the average size of the Pt nanoparticles slightly increased from 2.3 nm to 2.7 nm with an increase in the quantity of CTAB added, and the Pt nanoparticle on the surface of carbon black (XC-72) was successfully reduced. The best Pt utilization efficiency of Pt/C-4.12 was 63.53%, which was 13.16 % higher than that of the commercial catalyst JM-20 wt% Pt/C. Under the electrolyte of CH3OH + H2SO4, the durability of the in-house Pt/C catalyst was as good as that of the commercial catalyst. Furthermore, the polarization curve test of the single cell MEA-1 with the Pt/C-4.12 catalyst had the highest power density among all MEAs. At 25 °C, the high power density of MEA-1 (0.937 W cm-2 mg-1) was 40.9% higher than that of MEA-JM. At 75 °C, and the maximum power density of MEA-1 was 45.4% higher than that of the commercial one. These results imply that the significant electrocatalytic capability of the synthesized Pt/C catalyst obtained through this procedure can be exploited in a fuel cell environment.
The second objective of this dissertation is to examine the feasibility of the highly active Pt/MWNT electrocatalyst as an active catalyst layer (CL) applied in the VRFB system. The high activity of the Pt/MWNT electrocatalyst was prepared by first object technology. Cyclic voltammetry analyses demonstrated that the Pt/MWNT electrocatalyst has good performance in enhancing V3+/VO2+ and VO2+/VO2+ redox reactions under 0.01 M VOSO4 + 0.2 M H2SO4 electrolyte. Ion diffusion was suggested to control the redox reaction behavior of V3+/VO2+ and VO2+/VO2+ on each electrode. During the charge–discharge test of a single cell, no catalyst existed in the positive end, and both active electrodes used the same electrolyte (1 M VO2+ –1 M H2SO4) when the activity CL of the Pt/MWNT electrocatalyst was designed in the negative electrode. The redox reaction of V3+/VO2+ occurred in the cathode, whereas the redox reaction of VO2+/VO2+ occurred in the anode, a result indicating the redox coupling of V3+/VO2+ and the simultaneous establishment of a new type of V(III)/V(V) battery. Under the same experimental parameter and system, the charge–discharge function of a single cell will not be presented with the pristine active carbon material of both electrodes. Moreover, when the Pt/MWNT electrocatalyst layer was set in the positive active electrode (Pt/MWNT + GF) and the negative active electrode was pristine graphite felt, and when 1 M VO2+ + 1 M H2SO4 solution was used on the positive side and 1 M V3+ + 1 M H2SO4 solution was used on the negative side. The performance of the traditional V(II)/V(V) single cell obviously improved by 11.58% and 8% with the Pt/MWNT electrocatalyst layer compared with that using pristine graphite felt as active electrode at the two operating current densities of 20 and 30 mA cm-2, respectively. On the basis of these results, the Pt active catalyst improves the potential of the VRFB system. Nevertheless, the cost-effectiveness of the use of novel Pt metal as an active CL in the VRFB system is required. Therefore, this study also aims to discover a low-cost active metal catalyst to improve the performance of VRFB further.
URI: http://hdl.handle.net/11455/11466
其他識別: U0005-0708201210520800
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.