Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11494
標題: 鋁鉻鉭鈦鋯多元合金矽氮化物薄膜製備與機械性質之研究
Preparation and Mechanical Properties of Multicomponent (AlCrTaTiZr)NSix Coatings
作者: 張家榮
Chang, Chia-Jung
關鍵字: 奈米複合薄膜;Nanocomposite coatings;高熵合金;硬質薄膜;High entropy alloys;Hard coatings
出版社: 材料科學與工程學系所
引用: [1] H. Holleck and V. Schier, “Multilayer PVD coatings for wear protection”, Surface and Coatings Technology 76 (1995) 328-336. [2] H. C. Barshilia, B. Deepthi, A. S. Arunprabhu, and K. S. Rajam, “Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering”, Surface and Coatings Technology 201 (2006) 329–337. [3] Hugh O. Pierson, Handbook of refractory carbides and nitrides, Noyes Publications, New Jersey, 1996. [4] M. Kadoshima, K. Akiyama,K. Yamamoto,H. Fujiwara,T. Yasuda,T. Nabatame and A. Toriumi, “Improved C-V characteristics of metal-oxide-semiconductor capacitors with tantalum nitride gate electrodes grown by ultra-low-pressure chemical vapor deposition”, Journal of Vacuum Science & Technology B 23 (2005) 42-47. [5] H. Holleck, “Material Selection for Hard Coatings”, Journal of Vacuum Science & Technology 4 (1986) 2661-2669. [6] I. Yonenaga, A. Nikolaev, Y. Melnik and V. Dmitriev, “High-Temperature Hardness of Bulk Single-Crystal AlN”, Japanese Journal of Applied Physics 40 (2001) L426-L427. [7] J.L. He, L.C. Guo, D.G. Yu, R.P. Liu, Y.J. Tian and H.T. Wang, “Hardness of cubic spinel Si3N4”, Appllied Physics Letters 85 (2004) 5571-5573. [8] T. Yamamoto, M. Kawate, H. Hasegawa, T. Suzuki, “Effects of nitrogen concentration on microstructures of WNX films synthesized by cathodic arc method ”, Surface and Coatings Technology 193 (2005) 372-374. [9] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok, “Microstructural characterization of binary and ternary hard coating systems for wear protection Part II: Ti(CN) PACVD coatings”, Surf. Coat. Technol. 898 (1999) 116-119. [10] M. Yoshino, M. Shimozuma, H. Date, H. Itoh, H. Tagashira, “Deposition of SiC films by ion-enhanced plasma chemical vapor deposition using tetramethylsilane + H2”, Thin Solid Films 492 (2005) 207-211. [11] J. Takadoum, H. H. Bennani, and M. Allouard, “Friction and wear characteristics of TiN, TiCN and diamond-like carbon film”, Surface and Coatings Technology 88 (1996) 232-238. [12] A. Mathews, “Coatings Tribology - A Concept, Critical Aspects and Future-Directions”, Thin Solid Films 253 (1994) 173-178. [13] S. Veprek, and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films 268 (1995) 64-71. [14] S. Christiansen, M. Albrecht, H. P. Strunk, S. and J. Veprek, “Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy”, Journal of Vacuum Science & Technology B 16 (1998) 19-22. [15] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok, “Microstructural characterization of binary and ternary hard coating systems for wear protection Part II: Ti(CN) PACVD coatings”, Surface and Coatings Technology 898 (1999) 116-119. [16] M. Diseren , J. Patscheider and F. Levy, Surf. Coat. Technol. 120–121 (1999) 158. [17] A. Flink, T. Larsson, J. Sjölén, L. Karlsson, L. Hultman, “Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability”, Surface and Coatings Technology, 200 (2005) 1535-1542. [18] S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes, E. Alves, “Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings”, Thin Solid Films 398 –399 (2001) 391–396. [19] M. Diserens , J. Patscheider , F. Le´vy, Surface and Coatings Technology 120–121 (1999) 158–165. [20] Chi-Lung Chang , Chi-Song Huang, “Effect of bias voltage on microstructure, mechanical and wear properties of Al–Si–N coatings deposited by cathodic arc evaporation”, Thin Solid Films 519 (2011) 4923–4927. [21] In-Wook Park , Dong Shik Kang , John J. Moore , Sik Chol Kwon , Jong Joo Rha , Kwang Ho Kim , Surface & Coatings Technology 201 (2007) 5223–5227. [22] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Rivi`ere, A. Cavaleiro, E. Alves, Surface and Coatings Technology 133–134 (2000) 307–313. [23] Jan Procházka, Pavla Karvánková, Maritza G.J. Vepˇrek-Heijman, Stan Vepˇrek, Materials Science and Engineering A 384 (2004) 102–116. [24] Z.G. Li, M. Mori, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, Surface & Coatings Technology 193 (2005) 345– 349. [25] D. Pilloud, J.F. Pierson, A.P. Marques, A. Cavaleiro , Surface and Coatings Technology 180 –181 (2004) 352–356. [26] Dong Keun Lee , Dong Shik Kang , Ju Hyung Suh , Chan-Gyung Park , Kwang Ho Kim, Surface & Coatings Technology 200 (2005) 1489 – 1494. [27] K. Chakrabarti, J. J. Jeong, S. K. Hwang, Y. C. Yoo, and C.M. Lee, “Effects of nitrogen flow rates on the growth morphology of TiAlN films prepared by an rf-reactive sputtering technique ”, Thin Solid Films 406 (2002) 159–163. [28] P. Hammer, A. Steiner, R. Villa, M. Baker, P.N. Gibson, J. Haupt, W. Gissler, “Titanium Boron-Nitride Coatings of Very High Hardness”, Surface and Coatings Technology, 68 (1994) 194-198. [29] Deqiang Yin, Xianghe Peng, Yi Qin, Zhongchang Wang, “Impact of residual stress on the adhesion and tensile fracture of TiN/CrN multi-layered coatings from first principles”, Physica E 44 (2012) 1838-1845. [30] N. M. Dunaev, and M. I. Zaharova, “Manifestation of Fermi-Surface in Phase-Trasitions of metallic alloys” Techn. Phys. 20 (1974) 336-337. [31] J. Musil, and P. Zeman, “ZrN/Cu nanocomposite film—a novel superhard material”, Surf. Coat. Technol. 120-121 (1999) 179-183. [32] S. Veprek, S. Reiprich and L. Shizhi , “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, Appllied Physics Letters 66 (1995) 2640-2642. [33] S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167 (2003) 113–119. [34] P. Zeman, R. Ĉerstvý, P.H. Mayrhofer, C. Mitterer, J. Musil, “Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings”, Materials Science and Engineering A289 (2000) 189–197. [35] S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167 (2003) 113–119. [36] J. Patscheider, “Nanocomposite hard coatings for wear protection”, MRS Bulletin 28 (2003) 180-183. [37] C.H. Lai, S.J. Lin, J.W. Yeh, and S.Y. Chang, “Preparation and Characterization of AlCrTaTiZr Multi-element Nitride Coatings”, Surf. Coat. Tech., 201 (2006) 3275-3280. [38] 賴加瀚,“Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究”,國立清華大學材料科學工程研究所博士論文,2007 年。 [39] S.Y. Chang, M.K. Chen, and D.A Chen, “Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Copper metallization”, J. Electrochem. Soc., 156 (2009) 37-42. [40] 陳明谷,“鋁鉻鉭鈦鋯多元高熵合金氮化物薄膜製備與擴散阻障性質之研究”,國立中興大學材料科學與工程學系碩士論文,2008 年。 [41] Keng-Hao Cheng, Che-Wei Tsai, Su-Jien Lin and Jien-Wei Yeh, “Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)–Six–N coatings by reactive RF magnetron sputtering”, J. Phys. D: Appl. Phys. 44 (2011) 205405(7pp). [42] J.W. Yeh, S.K.Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303. [43] Shao—Yi Lin, Shou-Yi Chang, Yi-Chung Huang, Chia-Liang Wu, “Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings”, Surf. Coat. Tech., 204 (2010) 3307-3314. [44] Shou-Yi Chang, Shao—Yi Lin, Yi-Chung Huang, “Microstructures and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings”, Thin solid films 519 (2011) 4865-4869.
摘要: 
在製造工業應用上,為有效提升工件使用壽命並滿足高硬度、高溫穩定性、耐磨損等需求,常藉由適當的材料和製程選擇,在工件表面鍍上保護層,以增加工件使用效能。本實驗室過去針對高熵合金的研究中顯示,(AlCrTaTiZr)多元合金氮化物薄膜在硬膜發展上具有相當高的潛力,可應用在切削工具零件表面的硬質保護層,因此本研究更進一步以 AlCrTaTiZr 多元合金為靶材,並使用商用 Si 靶共鍍,以射頻磁控濺鍍機製備 (AlCrTaTiZr)NSix 多元矽氮化物薄膜,分析其特性表現。研究發現基板外加偏壓和 Si 靶的功率增加可使多元矽氮化物薄膜從擇優取向 (111) 之粗大的柱狀晶結構體轉變成結晶緻密、細化的奈米複合結構薄膜,加上矽氮化物的共價鍵結、奈米複合結構以及晶格扭曲而達到材料強化的效果。在外加偏壓為 -100V 且矽靶功率為 50W 時,可得機械性質最佳之 (AlCrTaTiZr)N0.82Si0.14 薄膜,薄膜矽含量為 7.27%,其硬度值、H / E 、H3 / E2 分別從 13 GPa 增加到 30 GPa、從 0.06 增至 0.117 以及從 0.05 增至 0.411 GPa,顯示出薄膜具有高抗塑性變形及耐磨損能力。通過奈米壓痕周圍晶格結構觀察,發現薄膜中有大量差排及晶格扭曲的產生,推測其變形機制為低角度差排及疊差活動主導,當壓力釋放後,差排減少且晶格逐漸恢復成整齊的晶格結構。

In manufacturing industries, protective coatings have been applied onto the surfaces of tool parts to fulfill the demands of high hardness, thermal stability and abrasion resistance as well as to enhance the lifetime of the parts. In this study, multi-component (AlCrTaTiZr)NSix coatings were deposited by RF magnetron co-sputtering using AlCrTaTiZr-alloy and silicon targets, and their performances were characterized. It was found that, as the applied substrate bias and Si-target power increased, the (AlCrTaTiZr)NSix coatings transformed from a large columnar structure with a [111] preferred orientation to a dense and ultrafine nanocomposite structure. The coatings were strengthened, attributed to the densification of the coatings, the introduction of covalent-like bonds, the refinement of grains, the formation of nanocomposite structure and the existence of large lattice distortions. At an applied bias voltage of -100V and a silicon target power of 50W, the (AlCrTaTiZr)N0.82Si0.14 coating with a silicon content of 7.27% showed the best mechanical performance; the hardness, H/E ratio, and H3/E2 ratio of the coating increased from 13 to 30 GPa, from 0.06 to 0.117, and from 0.05 to 0.411 GPa, respectively, indicating a high resistance to plastic deformation and abrasion wear. From the lattice observations around nanoindent marks, the formation of large numbers of dislocations and lattice distortions was found, suggesting the deformation mechanism of the coating through the activities of low-angle dislocations and stacking faults. As the stress was released, the number of dislocations decreased and a perfect lattice structure was recovered.
URI: http://hdl.handle.net/11455/11494
其他識別: U0005-1812201219512100
Appears in Collections:材料科學與工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.