Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11504
DC FieldValueLanguage
dc.contributor許薰丰zh_TW
dc.contributor.author巫宥翰zh_TW
dc.contributor.authorWu, You-Hanen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:47:45Z-
dc.date.available2014-06-06T06:47:45Z-
dc.identifierU0005-2308201313181000en_US
dc.identifier.citation[1-1] H. W. Deckman, J. H. Dunsmuir, “Natural lithography”, Appl.Phys. Let, 41 (1982) 377. [1-2] J. C. Hulteen, R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces” , J. Vac.Sci. Technol, A 13 (1995) 1553. [1-3] Morales, a. M., “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor”, Nanowires. Science, 279((1998) 208. [1-4] Zhang, Z., Fan, X. H., Xu, L., Lee, C. S., & Lee, S. T., “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chemical Physics Letters, 337(2001)18. [1-5] Wang, N., Cai, Y., & Zhang, R. Q., “Growth of nanowires. Materials Science and Engineering”, R: Reports, 60(2008) 1. [1-6] X. Li and P. W. Bohn. “Metal-assisted chemical etching in HF/H2O2 produces porous silicon.” Applied Physics Letters,77(2000)16. [1-7] K. H. Yoo, K. S. Kang, Y. Chen, K. J. Han, and J. Kim, “The TiO2 nanoparticle effect on the performance of a conducting polymer Schottky diode”, Nanotechnol. 19(2008)505202. [1-8] H. Zhang, G. Chen, and D. W. Bahnemann,“Photoelectrocatalytic materials for environmental applications”, J. Mater. Chem.19, (2009)5089. [1-9] S. K. Mohapatra, N. Kondamudi, S. banerjee, M. Misra “Functionalization of Self-Organized TiO2 Nanotubes with Pd Nanoparticles for Photocatalytic Decompositions of Dyes under Solar Light Illumination ” , Langmuir , 24(2008) 11276-11281. [2-1] Zhang, X., Whitney, A. V., Zhao, J., Hicks, E. M.,V. Duyne, R. P. “Advances in Contemporary Nanosphere Lithographic Techniques” Journal of Nanoscience and Nanotechnology, 6(2006) 1920. [2-2] Tseng, P. C., Tsai, M. A., Yu, P., & Kuo, H. C. “Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells”, Appl(2012) 135. [2-3] Kosiorek, A., Kandulski, W., Glaczynska, H., & Giersig, M. “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks”, small-joirnal, 1(2005) 439. [2-4] Xiao, S., Yang, X., Edwards, E. W., La, Y.-H., & Nealey, P. F. “Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays”. Nanotechnology, 16(2005) S324–9. [2-5] Li, Y., Sun, J., Wang, L., Zhan, P., Cao, Z., & Wang, Z. (2008). Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal. Applied Physics A, 92(2008)., 291. [2-6] Tsai, T.-Y., Chen, T.-H., Tai, N.-H., Chang, S.-C., Hsu, H.-C., & Palathinkal, T. J. “The fabrication of a carbon nanotube array using a catalyst-poisoning layer in the inverse nano-sphere lithography method”. Nanotechnology, 20 (2009) 305303. [2-7] Velev, N. D. D. D., Ivanov, P. A. K. I. B., Yoshimura, H., & Nagayamat, K. “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir,8(1992)3183. [2-8] Deckman, H. W., & Dunsmuir, J. H. “Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantatio, Appl. Phys. Lett.41(1982)40377. [2-9] Hulteen, J. C., Treichel, D. a., Smith, M. T., Duval, M. L., Jensen, T. R., & Van Duyne, R. P. “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays. The Journal of Physical Chemistry B, 103(1999)3854. [2-10] Retsch, M., Zhou, Z., Rivera, S., Kappl, M., Zhao, X. S., Jonas, U., & Li, Q. “Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface”. Macromolecular Chemistry and Physics, 210(2009) 230. [2-11] Velev, N. D. D. D., Ivanov, P. A. K. I. B., Yoshimura, H., & Nagayamat, K. “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir ,17 (1992)3183. [2-12] Micheletto, R., Fukuda, H., & Ohtsut, M. “A Simple Method for the Production of a Two-Dimensional , Ordered Array of Small Latex Particles”, Langmuir,11(1999)3333. [2-13] Velev, N. D. D. D., Ivanov, P. A. K. I. B., Yoshimura, H., & Nagayamat, K. Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates, Langmuir , 17, (1992).3183. [2-14] Rybczynski, J., Ebels, U., and Giersig, M. “Large-scale, 2D arrays of magnetic nanoparticles. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 219 (2003) 1. [2-15] Stavroulakis, P. I., Christou, N., and Bagnall, D. Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly. Materials Science and Engineering: B, 165 (2009)186. [2-16] Dimitrov, A. S., and Nagayama, K. “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces”. Langmuir, 12 (1996)1303. [2-17] Kim, M. H., Im, S. H., and Park, O. O. “Rapid Fabrication of Two- and Three-Dimensional Colloidal Crystal Films via Confined Convective Assembly”. Advanced Functional Materials, 15(2005) 1329. [2-18] Li, W., Zhao, W., & Sun, P. “Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography. Physica E: Low-dimensional Systems and Nanostructures, 41 (2009)1600. [2-19] Plettl, A., Enderle, F., Saitner, M., Manzke, A., Pfahler, C., Wiedemann, S., & Ziemann,P. “Non-Close-Packed Crystals from Self-Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography. Advanced Functional Materials, 19 (2009) 3279. [2-20] Cong, C., Junus, W. C., Shen, Z., & Yu, T. New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching. Nanoscale research letters, 4 (2009)1324. [2-21] Yan, B., Zhu, Q., Hu, W. B., Hsu, W. K., Terrones, M., Grobert, N., Karali, T., et al. “A Simple Route to Silicon-Based Nanostructures”, Adv. Mater., 296(1999) 844. [2-22] Marlow, B. F., Mcgehee, M. D., Zhao, D., Chmelka, B. F., & Stucky, G. D. “Doped Mesoporous Silica Fibers : A New Laser Material”, Adv. Mater., 11 (2002) 632. [2-23] Stelzner, T., Pietsch, M., Andra, G., Falk, F., Ose, E., & Christiansen, S.“ Silicon nanowire-based solar cells”. Nanotechnology, 19 (2008)295203. [2-24] Cui, Y., Zhong, Z., Wang, D., Wang, W. U., & Lieber, C. M. High Performance Silicon Nanowire Field Effect Transistors. Nano Letters, 3(2003)149. [2-25] She, J. C., Deng, S. Z., Xu, N. S., Yao, R. H., & Chen, J. “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device. Applied Physics Letters, 88 (2006) 013112. [2-26] Hanrath, T., & Korgel, B. a. “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. Journal of the American Chemical Society, 124 (2002)1424. [2-27] Zhang, R.-Q., Lifshitz, Y., & Lee, S.-T. “Oxide-Assisted Growth of Semiconducting Nanowires. Advanced Materials, 15 (2003)635. [2-28] Search, H., Journals, C., Contact, A., Iopscience, M., & Address, I. P. “Aligned silica nanofibres, J. Phys.: Condens. Matter 14(2002) L473. [2-29] Dai, L., Chen, X. L., Zhou, T., Hu, B. Q., Jian, J. K., & Wang, W. J. Strong blue photoluminescence from aligned silica nanofibers. Applied Physics A: Materials Science & Processing, 76(2003) 625. [2-30] Wagner, R. S., & Ellis, W. C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters, 4(1964).89. [2-31] Ellis, C. “The vapor-Liquid-Solid Mechanism of Crystal Growth and, 233(1965).7 [2-32] Yan, H. F., Xing, Y. J., Xi, Z. H., & Feng, S. Q. “Growth of amorphous silicon nanowires via a solid – liquid – solid mechanism, Chemical Physics Letters,323(2000)224. [2-33] Park, H.-K., Yang, B., Kim, S.-W., Kim, G.-H., Youn, D.-H., Kim, S.-H., & Maeng, S.-L. “Formation of silicon oxide nanowires directly from Au/Si and Pd–Au/Si substrates. Physica E: Low-dimensional Systems and Nanostructures, 37 (2007)158. [2-34] Trentler, T. J., Hickman, K. M., Goel, S. C., Viano, A. M., Gibbons, P. C., & Buhro, W. E. “ Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science, 270 (1995).1791. [2-35] Lu, X., Fanfair, D. D., Johnston, K. P., and Korgel, B. a. “High yield solution-liquid-solid synthesis of germanium nanowires. Journal of the American Chemical Society, 127(2005). 15718. [2-36] Lu, X., Hanrath, T., Johnston, K. P., and Korgel, B. a. “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate. Nano Letters, 3 (2003). 93. [2-37] Hanrath, T., and Korgel, B. a. “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. Journal of the American Chemical Society, 124(2002)1424. [2-38] Morales, a. M. “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science, 279 (1998). 208. [2-39] Jeon, K. A., Kim, J. H., & Lee, S. Y. “Simple method for synthesis of silicon nanowire: Pulsed laser deposition in furnace from p-Si wafer target. Progress in Solid State Chemistry, 33 (2005)107. [2-40] Fukata, N., Oshima, T., Tsurui, T., Ito, S., & Murakami, K. “Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam. Science and Technology of Advanced Materials, 6(2005).628. [2-41] Wang, N., Cai, Y., & Zhang, R. Q. “Growth of nanowires. Materials Science and Engineering: R: Reports, 60(2008). 1. [2-42] Zhang, Z., Fan, X. H., Xu, L., Lee, C. S., & Lee, S. T. “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation,Chemical PhysicscLetters, 337(2001). 18. [2-43] Peng, K., Lu, A., Zhang, R., & Lee, S.-T. “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching. Advanced Functional Materials, 18 (2008).3026. [2-44] Fellahi, O., Hadjersi, T., Maamache, M., Bouanik, S., & Manseri, A. “Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching. Applied Surface Science, 257 (2010).591. [2-45] Li X. and Bohn. P. W. “Metal-assisted chemical etching in HF/H2O2 produces porous silicon.Applied Physics Letter,77(2000)16. [2-46] Peng, K., Yan, Y., Gao, S., & Zhu, J. “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition. Advanced Functional Materials, 13 (2003). 127. [2-47] He, Z., Smith, D., & Bennett, P. “Endotaxial Silicide Nanowires. Physical Review Letters, 93 (2004).1. [2-48] Bennett, P. a., Ashcroft, B., He, Z., & Tromp, R. M. “Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 20(2002). 2500. [2-49] Hsu, H.-C., Wu, W.-W., Hsu, H.-F., & Chen, L.-J. “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface. Nano Letters, 7 (2007)885. [2-50] Chen, S. Y., & Chen, L. J. “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy. Thin Solid Films, 508(2006) 222. [2-51] Chen, S. Y., & Chen, L. J. “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si. Applied Physics Letters, 87 (2005). 253111. [2-52] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode” , Nature 238 (1972) 37-38 [2-53] A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting” , Chem. Soc. Rev., 38 (2009) 253-378 [2-54] K. Maeda and K. Domen, “New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light” , J. Phys. Chem. C, 111 (2007) 7851-7861 [2-55] M. Kitano and M. Hara, “Heterogeneous photocatalytic cleavage of water” J. Mater. Chem.,20 (2010) 627-641 [2-56] T. Inoue, A. Fujishima, S. Konishi and K. Honda, “Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powers”,Nature, 277 (1979)637-638 [2-57] S.C. Roy, O.K. Varghese, M. Paulose and C.A. Grimes, “Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons” , ACS Nano, 4 (2010)1259-1278 [2-58] M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J.M. Coronado, “Development of alternative photocatalysts to TiO2: Challenges and opportunities” , Energy Eniron. Sci., 2 (2009)1231-1257 [2-59] F. Y. Wang, Q. D. Yang, G Xu, N. Y. Lei, Y. K. Tsang, “Ning-Bew Wong, and Johnny C. Ho, “Highly active and enhanced photocatalytic silicon nanowire arrays”, Nanoscale, 3 (2011), 3269–3276 [2-60] N. Megouda, Y. Cofininier, S. Szunerits, T. Hadjersi,O. ElKechai and R. Boukherroub , “Photocatalytic activity of silicon nanowires under UV and visible light irradiation”, Chem. Commun., 47 (2011), 991–993 [2-61] Y. Qu, T. Xue, X. Zhong, Y.C. Lin, L. Liao, J. Choi,and X. Duan, “Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties”, Adv. Funct. Mater. 20 (2010), 3005–3011 [2-62] Z. L. Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices”, Adv. Mater., 15(5) (2003) 432-436. [2-63] 王俊喻,“尺寸對於矽奈米線陣列之場發特性及鎳矽化物/矽異質結構奈米線之電性的影響”,碩士論文,國立中興大學材料科學與工程學系,民國一百零一年。 [4-1] Rybczynski, J., Ebels, U., & Giersig, M. “Large-scale, 2D arrays of magnetic nanoparticles’’. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219 (2003) 1 [4-2] Stavroulakis, P. I., Christou, N., and Bagnall, D. “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly’’. Materials Science and Engineering: B, 165 (2009). 186 [4-3] Yu, J., Yan, Q., and Shen, D. “Co-self-assembly of binary colloidal crystals at the air-water interface’’. ACS applied materials & interfaces, 2(2010). 1922 [4-4] Xia, Y., Gates, B., Yin, Y.,and Lu, Y. “Monodispersed Colloidal Spheres: Old Materials with New Applications”. Advanced Materials, 12(2000). 693 [4-5] Velev, N. D. D. D., Ivanov, P. A. K. I. B., Yoshimura, H., and Nagayamat, K. “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir ,8(1992). 3183-3190. [4-6] Yousong Liu, Guangbin Ji, Junyi Wang, Xuanqi Liang, Zewen Zuo and Yi Shi, “Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration”, Nanoscale Research Letters 7 (2012), 663 [4-7] Weisse, J. M., Kim, D. R., Lee, C. H., and Zheng, X. “Vertical transfer of uniform silicon nanowire arrays via crack formation”. Nano letters, 11 (2011). 1300. [4-8] Y. Qu, X. Zhong, Y. Li, L. Liao, Y. Huang and X. Duan ,“Photocatalytic properties of porous silicon nanowires”, J. Mater. Chem., 20 (2010) 3590–3594. [4-9] S.K. Mohapatra, N. Kondamudi, S. Banerjee and M. Misra, “Functionalization of Self-Organized TiO2 Nanotubes with Pd Nanoparticles for Photocatalytic Decomposition of Dyes under Solar Light Illumination”, Langmuir, 24(2008)11276-11281. [4-10] A. Houas , H Lachheb , M. Ksibi , E. Elaloui ,C.Guillard , J. M. Herrmann , “Photocatalytic degradation pathway of methylene blue in water”, Applied Catalysis B: Environmental., 31 (2001) 145–157. [4-11] 劉尚武, “原子力顯微鏡致氧化絕緣層覆矽基材與鎳矽化物於矽奈米線成長之研究” , 國立中興大學碩士論文 (2012). [4-12] K.Okubo, Y Tsuchiya, O. Nakatsuka, A. Sakai, S Zaima, and Y. Yasuda, “Influence of Structural Variation of Ni Silicide Thin Films on Electrical Property for Contact Materials”, Japanese Journal of Applied Physics 43,1896(2004). [4-13] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reation in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics 44,2945(2005).en_US
dc.identifier.urihttp://hdl.handle.net/11455/11504-
dc.description.abstract半導體材料的一維奈米結構,具有優良的光電特性與應用潛力,特別在光觸媒材料上之應用一直是許多學者研究的重點。 本實驗將奈米球微影法及金屬輔助催化蝕刻製備出矽奈米線陣列,並且在高溫下利用反應式磊晶法,蒸鍍鎳金屬於奈米線陣列,成長鎳矽化物/矽異質結構奈米線,並將試片進行光催化反應之研究。 研究結果顯示,利用聚苯乙烯球為遮罩經金屬輔助催化蝕刻製備的矽奈米線陣列具有較高的表面積、孔隙率及光吸收率,因與溶液有大面積的接觸,使光照射後更多電子電洞參與降解反應提升降解效率。在矽奈米線表面形成約6 nm的NiSi2晶粒,NiSi2/Si異質界面為蕭基特性形成的內建電位可使電子電洞對有效的分離,減少電子電洞再結合,而提高光催化效果。當少許鎳金屬擴散進入矽表面未形成明顯的NiSi2晶粒無法有效形成蕭特基能障,以致光分解效率無法有效提升;而若在矽奈米線表面已包覆一層NiSi2奈米薄膜,會使矽的光吸收能力降低,以至於光分解效率降低。鎳矽化物/矽奈米線可實際應用於日光照射降解亞甲藍液,且經循環使用後其光催化效果沒有明顯的下降,因此非常有潛力應用於光催化反應分解有機染料。zh_TW
dc.description.tableofcontents目錄 摘要 ……………………………………………………………I 目錄 …………………………………………………………..II 圖目錄 …………………………………………………………..VI 表目錄 …………………………………………………………..XI 第一章 前言 1 第二章 文獻回顧 4 2-1奈米球微影術 …..4 2-1-1奈米球自組裝微影術 4 2-1-2奈米球自組裝機制 4 2-2奈米球自組裝技術 5 2-2-1旋轉塗佈法 5 2-2-2自然滴製法 6 2-2-3 LB-like 自組裝技術 7 2-3反應式離子蝕刻技術 8 2-4矽奈米線 9 2-4-1從下而上(Bottom-up)方式成長矽奈米線的機制 9 2-4-2 矽奈米線成長方法 14 2-5 矽晶之蝕刻 17 2-5-1乾式蝕刻 17 2-5-2濕式蝕刻 17 2-6反應式磊晶法成長金屬矽化物奈米線 19 2-6-1鈷矽化物奈米線 19 2-6-2鈦矽化物奈米線 19 2-6-3鎳矽化物奈米線 20 2-7光觸媒 20 2-8研究動機 24 第三章 實驗步驟 25 3-1製備聚苯乙烯球陣列、矽奈米線陣列及鎳矽化物/矽異質結構奈米線陣列 25 3-1-1基板前處理 25 3-1-2自組裝聚苯乙烯球陣列 26 3-1-3縮減聚苯乙烯球作為微影之遮罩 26 3-1-4銀金屬之濺鍍作為催化劑 26 3-1-5製備矽奈米線陣列 27 3-2製備鎳矽化物/矽異質結構奈米線 27 3-3光觸媒分解有機染料 28 3-3-1汞氙燈照射 28 3-3-2日光照射 28 3-4實驗與分析儀器 28 3-4-1感應耦合式電漿蝕刻系統 28 3-4-2精密離子蝕刻鍍膜系統(Precision Etching Coating System) 28 3-4-3場發射掃瞄式電子顯微鏡(Field Emission-SEM) 29 3-4-4穿透式電子顯微鏡(TEM) 29 3-4-5高解析穿透式電子顯微鏡(HRTEM) 29 3-4-6紫外光/可見光分光光譜儀(UV-Visible Spectrometers) 29 第四章、結果與討論 31 4-1利用奈米球陣列作為微影之遮罩 31 4-1-1影響奈米球排列之因素 31 4-1-2反應式離子蝕刻聚苯乙烯球 32 4-2 表面形態對光催化反應之影響 33 4-3 鎳矽化物/矽異質結構之光催化反應 37 4-4鎳矽化物形態對光催化反應之影響 39 4-5 鎳矽化物/矽異質結構奈米線陣列之光催化反應之循環使用 41 第五章 結論 42 參考文獻 77 附錄………………………………………………………………………87zh_TW
dc.language.isozh_TWen_US
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201313181000en_US
dc.subject矽化物zh_TW
dc.subjectsilicideen_US
dc.subject光降解zh_TW
dc.subjectPhotocatalyticen_US
dc.title鎳矽化物/矽異質結構奈米線陣列光催化反應之研究zh_TW
dc.titlePhotocatalytic properties of Ni-silicide/Si heterostructure nanowire arraysen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1zh_TW-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.