Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11506
標題: 鎳鈷合金電鑄層之腐蝕磨耗行為研究
A Study on the Corrosion and Wear Behavior of Ni-Co Electroforming Coatings
作者: 李明翰
Li, Ming-Han
關鍵字: 鎳鈷合金;Ni-Co alloy;電鑄;腐蝕;腐蝕磨耗;electroforming;corrosion;tribocorrosion
出版社: 材料科學與工程學系所
引用: [1]E. Gomez, S. Pane, E. Valles, “Electrodepositing of Co-Ni and Co-Ni-Cu systems in sulphate-citrate medium”, Electrochim. Acta, vol. 51, pp.146-153, 2005 [2]L. Wang, Y. Gao, Q. Xue, H. Liu and T. Xu, “Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits”, Appl. Surf. Sci., vol. 242, pp.326-332, 2005 [3]F. A. Lowenheim, “Electroplating: Fundamentals of Surface Finishing”, 1st ed., McGraw-Hill, pp.540-541, 2005 [4]M. Thoma, “A cobalt/chromic oxide composite coating for high-temperature wear resistance”, Plating Surf. Finish, vol. 71, pp.51-53, 1984 [5]D. Baudrand, “Nickel sulfa mate plating, its mystique and practicality”, Met. Finish, vol. 94, pp.15-18, 1996 [6]A. Brenner, “Electrodepositing of Alloys”, Acad. Press, New York, vol. II, pp.457-477, 1963 [7]微機電系統技術與應用,行政院國家科學委員會精密儀器發展中心, pp.225-245,2002 [8]M. Schlesinger , M. Paunovic, “Modern electroplating” 4th ed., pp.10-22, New York, John Wily & Sons, Inc, 2000 [9]鮮祺振,電極動力學,徐氏基金會出版,pp.1-16,1996 [10]T. Watanabe, “NANO-PLATING Microstructure Control Theory of Plated Films and a Data Base of Plated Films Microstructure”, Elsevier, pp.1-94, 2004 [11]T. B. Massalski, “Physical Metalluragy”, Part 1, 3rd, edited by R.W. Cahn and P. Haasen, Elsevier Science Pudlishers, pp.154-163, 1983 [12]M. Hansen, K. Anderko, “Constitution of Binary Alloys”, New York: McGraw -Hill, 2nd pp.1078-1080, 1958 [13]P. Haasen, “Physical Metallurgy”, Part 2, 3rd ed., edited by R.W. Chan and P. Hassen, Elsevier Science Publishers, pp.1349-1357, 1983 [14]H. Dahms, I. M. Croll, “The anomalous codeposition of Iron-Nickel alloys”, J.Electrochem. Soc., vol. 112, pp.771-775, 1965 [15]D. Golodnitsky, Yu. Rosenberg, A. Ulus, “The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte”, Electrochem. Acta, vol. 47, pp.2707-2714, 2002 [16]S. Hessami, C. W. Tobias, “A mathematical model for anomalous codeposition of Nickel-Iron on a rotating disk electrode”, J. Electrochem. Soc., vol. 136, pp.3611-3616, 1989 [17]M. Matlosz, “Competitive adsorption effects in the electrodeposition of Iron-Nickel alloys”, J. Electrochem. Soc., vol. 140, pp.2272-2279, 1993 [18]A. Ghahremaninezhada, A. Dolatib, “A study on electrochemical growth behavior of the Co–Ni alloy nanowires in anodic aluminum oxide template”, Journal of Alloys and Compounds ., vol. 480, pp.275–278, 2009 [19]V. D. Jovic, N. Tosic, M. Stojanovic, “Characterization of electrodeposited Co+Ni alloys by application of the ALSV techniqueProfessor Aleksandar Despic to commemorate his 70th birthday”, Journal of Electroanalytical Chemistry, vol. 420, pp.43-51, 1997 [20]C. Lupi, A. Dell''Era, M. Pasquali, P. Imperatori, “Composition, morphology, structural aspects and electrochemical properties of Ni-Co alloy coatings”, Surf. Coat. Tech., vol. 205, pp.5394-5399, 2011 [21]C. L. Faust, “Modern Electroplating”, edited by Frederick A. Lowenheim, John Wiley & Sons, New York, pp.488, 1974 [22]F. Czerwinski, Z. Kedzierski, “On the mechanism of microcrack formation in nanocrystalline Fe-Ni electrodeposits”, J. Mater. Sci., vol. 32, pp.2957-2961, 1997 [23]T. Watanabe, “NANO-PLATING Microstructure Control Theory of Plated Films and a Data Base of Plated Films Microstructure”, Elsevier, pp.95-139, 2004 [24]M. Volmer, A. Weber, “Nuclei formation in supersaturated states”, Z. Phys. Chem., vol. 119, pp.277-301, 1926 [25]F. C. Frank, J. H. Van Der Merwe, “One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth”, Proc. R. Soc. London, A198, PP.216-225, 1949 [26]I. N. Stranski, L. Kratanov, “Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander”, Ber. Akad. Wiss. Wien, vol.146, pp.797-810, 1938 [27]W. Losey, J. Kelly, “Comprehensive Microsystems, ” Published by Elsevier B.V., pp.271-292, 2008 [28]R. Weil, K. Raghunathan, “The effects of some plating variables on the structure of thin nickel electrodeposits”, Surf. Tech., vol. 10, pp.331-342, 1980 [29]R. W. Hoffman, “Stresses in thin films: The relevance of grain boundaries and impurities”, Thin Solid Films, vol. 34, pp.185-190, 1976 [30]F. Czerwinski, “The microstructure and internal stress of Fe-Ni nanocrystalline alloys electrodposited without a stress-reliever”, Electrochem. Acta, vol. 44, pp.667-675, 1998 [31]F. Czerwinski, “Grain size-internal stress relationship in Iron-Nickel alloys electrodeposits”, J. Electrochem. Soc., vol. 143, pp.3327-3332, 1996 [32]D. Y. Park, K.S. Park, J. M. Ko, D. H. Cho, S. H. Lim, W. Y. Kim, B. Y. Yoo, N. V. Myung, “Electrodeposited Ni1-xCox Nanocrystalline Thin Films structure-property relationships”, J. Electrochem. Soc., vol. 153, pp.814-821, 2006 [33]S.-H. Kim, H.-J. Sohn, Y.-C. Joo, Y.-W. Kim, T.-H.Yim, H.-Y. Lee, T. Kang, “Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt% Ni alloy”, Surf. Tech., Vol. 199, pp.43-48, 2005 [34]L. Burzyńska, E. Rudnik, “The influence of electrolysis parameters on the composition and morphology of Co–Ni alloys”, Hydrometallurgy, vol. 54, pp.133-149, 2000 [35]Y. Li, H. Jiang, D. Wang, H. Ge “Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni–Co alloys”, Surf. Coat. Tech., vol. 202, pp.4952–4956, 2008 [36]J. Vijayakumar, S. Mohan, S. S. Yadav, “Effects of primary dicarboxylic acids on microstructure and mechanical properties of sub-microcrystalline Ni–Co alloys”, Journal of Alloys and Compounds, vol. 509, pp.9692-9695, 2011 [37]D. A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hall International Inc, pp.44-171, 1997 [38]柯賢文,腐蝕及其防治,全華科技圖書,pp.28-67,1985 [39]鮮祺振編著,金屬腐蝕特性討論,徐氏文教基金會,pp.77-78,1998 [40]莊東漢編著,材料破損分析,五南圖書,pp.282-312,2007 [41]E. Rabinowicz, “Friction and wear of materials”, John Wiley & Sons Inc., pp.88-95, 1995 [42]F. P. Bowden, A. J. W. Moore, D. Tabor, “The ploughing and adhesion of sliding metals”, J. Appl. Phys., vol. 14, pp.80-91, 1943 [43]G. Z. Karl-Heinz, “Microstructure and wear of materials”, Elservier Sci. Publishing Company Inc., pp.113-119, 1987 [44]李弘彬“鎳磷合金電鍍層之腐蝕磨耗行為研究”,國立中興大學材料科學與工程學系 博士論文,pp8-36, 2010 [45]M. H. Hong, S. I. Pyun, “Applied potential dependence of corrosive wear behavior of 304-L Stainless steel in sulphuric acid solution”, Jour. of Mater. Sci. Lett., vol. 10, pp.716-719, 1991 [46]T. C. Zhang, X. X. Jiang, S. Z. Li, “Acceleration of corrosive wear of duplex stainless steel by chloride in 69% H3PO4 solution”, Wear, vol. 99, pp.253-259, 1996 [47]鮮祺振,腐蝕理論與實驗,徐氏文教基金會,pp.16-18,(1993) [48]H. Abd-E1-Kader, S. M. E1-Raghy, “Wear-corrosion mechanism of stainless steel in chloride media”, Corros. Sci., vol. 26, pp.647-653, 1986 [49]K.H. Hou, M.D. Ger, L.M. Wang, S.T. Ke, “The wear behaviour of electro-codeposited Ni–SiC composites”, Wear, vol.253, pp.994-1003, 2003 [50]Nalan Oya San, Hasan Nazır, Gonul Donmez, “Evaluation of microbiologically influenced corrosion inhibition on Ni–Co alloy coatings by aeromonas salmonicida and clavibacter michiganensis”, Corros. Sci., vol.65, pp.113-118, 2012 [51]B. Tury, M. Lakatos-Varsanyi, S. Roy, “Effect of pulse parameters on the passive layer formation on pulse plated Ni-Co alloys”, Appl. Surf. Sci. vol. 253, pp.3103-3108, 2007 [52]S. Kim, D. A. Tryk, M. R. Antonio, R. Carr, D. Scherson, “In situ x-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes”, Jour. of Phys. Chem., vol. 40, pp.10269-10276, 1994 [53]B. Tury, M. Lakatos-Varsanyi, S. Roy, “Ni-Co alloys plated by pulse currents”, Surf. Corr. Tech., vol. 200, pp.6713-6717, 2006 [54]L. M. Chang, M. Z. An, S. Y. Shi, “Corrosion behavior of electrodeposited Ni-Co alloys coatings under the presence of NaCl deposit at 800oC”, Mater. Chem. Phys., vol. 94, pp.125-130, 2005 [55]Sh. Hassani, K. Raeissi, M. Azzi, D. Li, M.A. Golozar, J. A . Szpunar, “Improving the corrosion and tribocorrosion resistance of Ni–Co nanocrystalline coatings in NaOH solution”, Corr. Sci., vol. 51, pp.2371-2379, 2009 [56]B. Bakhit, A. Akbari, “Effect of particle size and co-deposition technique on hardness and corrosion properties of Ni–Co/SiC composite coatings”, Surf. Coat. Tech., vol. 206, pp.4964-4975, 2012 [57]M. Srivastava, V. Ezhil Selvi, V. K. William, K. S. Rajam, “Corrosion resistance and microstruvture of electrodeposited Nickel-Cobalt alloys coatings”, Surf. Coat. Tech., vol. 201, pp.3051-3060, 2006 [58]G. Wu, N. Li, D.R. Zhou, K.C. Mitsuo, “Electrodeposited Co-Ni-Al2O3 Composite Coatings”, Surf. Tech., vol. 176, pp.157-164, 2003 [59]X. C. Li and Z. W. Li, “Nano-size Si3N4 reinforced NiFe nanocomposites by electroplating”, Mater. Sci. Eng., vol. 358(1-2), pp.107-113, 2003 [60]A. F. Zimmerman, G. Palumbo, K.T. Aust, “Mechamical properties of nickel carbide nanocom posites”, Mater. Sci. Eng., vol. 328(1-2), pp.137-146, 2002 [61]L. Shi, C. Sun, P. Gao, F. Zhou, W. Li, “Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite”, Appl. Surf. Sci., vol. 252, pp.3591-3599, 2006 [62]C. Ma, S. C. Wang, L. P. Wang, F. C. Walsh, R. J. K. Wood, “The role of a tribofilm and wear debris in the tribological behaviour of nanocrystalline Ni–Co electrodeposits”, wear, pp.1-8, 2013 [63]L. Shi, C. F. Sun, F. Zhou, W. M. Liu, “Electrodeposited nickel–cobalt composite coating containing nano-sized Si3N4”, Mater. Sci. and Eng., vol. 397, pp.190-194, 2005 [64]M. Srivastava. V.K. William Grips. K.S. Rajam, “Electrochemical deposition and tribological behaviour of Ni and Ni–Co metal matrix composites with SiC nano-particles”, Appl. Surf. Sci. vol. 253, pp.3814-3824, 2007 [65]劉仁志,實用電鑄技術,化學工業出版社,pp.26-30,2006 [66]蘇葵陽、張良謙,實用電鍍理論與實際,復文書局,pp.97-121,1994 [67]H. Klung, L. Alexander, “X-ray diffraction procedures for polycrystalline and amorphous materials”, John Wiley, New York, pp.618, 1974 [68]C. K Fang, C. C. Huang, T. H. Chuang, “Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminum matrix composites”, Metall. Mater. Trans., vol. 30, pp.643-651, 1999
摘要: 
本研究採用氨基磺酸鹽系鍍液經由直流電鍍製備鎳鈷合金,並於腐蝕及腐蝕磨耗等條件下進行研究。所製備電鍍鎳鈷合金之鍍層硬度約512~560 Hv,經由能量色散光譜儀測量出鈷含量22.2 wt%,接著由X光繞射儀分析晶粒大小約17~21 nm。在5 wt % NaCl溶液,試片表面速度0.021 m/s下,進行動態腐蝕電位極化曲線量測,結果顯示鍍層的腐蝕曲線從活化區經由不穩定區直接到過鈍化區的轉變行為,在溫度25oC經由不同負載(0、9.80 N)條件之磨耗腐蝕實驗得知,發現有負載比無負載時其極化電位與腐蝕電流密度略高。
腐蝕試驗方面,隨著腐蝕極化電位增加,在+600mVSCE鍍層表面形貌有大量蝕點相連並形成腐蝕白痕,最後蝕點轉變成為蝕坑,圓形蝕點直徑增大到189.6μm,深度為約25μm。表面粗糙度方面由Ra=0.23μm增加到Ra=0.63μm。由腐蝕實驗試片的掃描電子顯微鏡可看出鍍層表面因腐蝕形成裂紋,使腐蝕液經由裂紋深入鍍層內部,進而腐蝕鎳鈷合金鍍層晶粒,形成蝕坑。經由能量散佈分析儀分析各個電極電位的鈷含量從22.50 wt%降至 21.67 wt%,鍍層損失值也從0.04mg升高到0.47mg。隨著鍍層鈷含量減少,重量損失值也跟著增加,由此判斷鍍層遭到腐蝕攻擊。
腐蝕磨耗試驗方面,在+600mVSCE,鍍層表面因被磨塊刮除後只留下極少量的碎片,並且鍍層因被刮除後腐蝕攻擊點範圍變大數量也變多,幾乎為整片鍍層都有腐蝕群坑,鍍層鈷含量為10.66 wt%,從電極電位+600mVSCE的鍍層橫截面可觀察出此蝕坑吃掉鍍層情況比+300mVSCE還來得嚴重,此蝕坑寬度為約150um,深度為25um。當進行腐蝕磨耗時,陶瓷滑過接觸面增加,並且因電流密度較大,容易使鍍層氧化物剝落下來,導致磨耗加速鍍層腐蝕。
關鍵詞:鎳鈷合金;電鍍;腐蝕;腐蝕磨耗

The performance of Ni-Co alloy, prepared by electrodeposition in amino sulfmate bath with pulse current, in the corrosion/tribocorrosion environment was studied in this thesis. The dynamic polarization curve of the cylindrical specimen in 5wt% NaCl solution with tangential surface speed of 0.021m/s was measured. The result showed that the gradual transition of the corrosion behavior from active, unstable to transpassive as the electric potential was raised. The prepared Ni-Co alloy plating had a hardness of about 512 ~ 560 Hv, a cobalt content of 22.2 wt% measured by the energy dispersive spectrometer(EDS), and the grain size about 17 ~ 21 nm followed by the X-ray diffraction(XRD) analysis. Accompanying the increase in the applied over-potential, the surface morphology of the specimen after corrosion testing evolved from having small pitting into intensive aggregation holes, and finally the big corrosion holes with delamination cracking. The generated cracking near the surface provided the further penetration path for the corrosive solution into the coating. At over-potential of +600mVSCE, a large number of pitting occurred on the coating surface, connected to the formation of corrosion white marks, and finally transformed into pits, with round diameter around 200μm, depth of 25μm. In the meantime, the surface roughness increased from Ra=0.23μm to Ra=0.63μm. The counter sliding grinding block scraped off most of the corrosion product and left only a few small fragments on the coating surface. Consequently, the coating was open to corrosion attack without the protection of passivated corrosion film and almost the entire coating was fulled of pit corrosion. In addition, cobalt content of the coating was reduced to 10.66wt%. From the cross-sectional SEM examinations, the corrosion attack on the +600mVSCE specimen, which had corrosion pit in a dimension of 150um wide and 25um deep, was far more severe than on the +300mVSCE one. Under the tribocorrosion, the counter sliding ceramic block swept the over the contact surface and removed part of oxide coating. Therefore, the current density, was increased and corrosion wear of the coating accelerated.
Keywords: Ni-Co alloy; electroplating; corrosion; tribocorrosion
URI: http://hdl.handle.net/11455/11506
其他識別: U0005-2504201315265800
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.