Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11523
DC FieldValueLanguage
dc.contributor林克偉zh_TW
dc.contributorKo-Wei Linen_US
dc.contributor.author劉琪欣zh_TW
dc.contributor.authorLiu, Chi-Hsinen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:47:46Z-
dc.date.available2014-06-06T06:47:46Z-
dc.identifierU0005-2406201311325400en_US
dc.identifier.citation第一章參考文獻 [1] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] W. P. Meiklejohn, J. Appl. Phys., 33, 1328 (1962). [3] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [4] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [5] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [6] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [7] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [8] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [9]M. H. Hong, K. Hono, and M. Watanabe, J. Appl. Phys., 84, 4403 (1998). [10]Nicola A. Spaldin,”Magnetic materials”. [11]聶亨芸,國立清華大學碩士論文(2002)。 [12]David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [13] 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [14] N. Koon, Phys. Rev. Lett., 78, 4865 (1997). [15] D. Thompson et al., IEEE Trans. Magn.,11, 1036 (1975). [16] J. Noguesa, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports, 422, 65 (2005). [17] 胡裕民、黃榮俊,”鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月刊廿廿卷六期。 [18] L. Neel, Ann Phys., 2, 61 (1967). [19] U. Nowak and K. D. Usadel, Phys. Rev. B., 66, 014430 (2002). [20] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61, 2472 (1998). [21] R. C. O’handley,”Modern Magnetic Materials”,John Wiley and sons Inc.(2002). [22] Modern Magnetic Materials, R. C. O’Handley, John Wiley and Sons, Inc. New York (2000) [23] Phase Diagrams of Ternary Iron Alloys, V. Raghavan, The Indian Institute of Mateals, part 5, 7 (1989). [24] P. P. Freitas, J. L. Leal, T. S. Plaskett, L. V. Melo, and J. C. Soares, J. Appl. Phys., 75, 6480 (1994). [25] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3819 (1994). [26] C.-L. Lin, J. M. Sivertsen, and J. H. Judy, IEEE Trans. Magn., 30, 3834 (1994). [27] J. Fujikata, K. Isihara, K. Hayashi, H. Yamamoto, and K. Yamada, IEEE Trans. Magn., 31, 3936 (1995). [28] B. Dieny, V. S. Speriosu, S. S. P. Parkung, B.A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev., 43, 1297 (1991). [29] J. S. Moodera et al., Phys. Rev. Lett., 74, 3273 (1995). [30] G. A. Prinz, Science, 282, 1660 (1998). [31] L. Geppert, IEEE Spectrum, 49, March 2003. [32] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater., 200, 552 (1999). [33]陳宗杰,國立中興大學碩士論文(2009)。 [34]黃宣榕,國立中興大學碩士論文(2010)。 [35]楊侃儒,國立中興大學碩士論文(2010)。 [36]賴伯誠,國立中興大學碩士論文(2011)。 [37]丁怡文,國立中興大學碩士論文(2011)。 [38]陳姵希,國立中興大學碩士論文(2012)。 第二章參考文獻 [1] R. C. Weast, ”Handbook of Chemistry and Physics”, CRC Press, Inc 1986. [2] E. M. Levin et al, ”Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964. [3] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3818 (1994). [4] A. E. Berkowitz and K. Takono, J. Magn. Magn. Mater., 200, 552 (1999). [5] Lederman D., Nogues J., Phys. Rev. B. 56(5), 2332 (1997). [6] Journal of Phase Equilibria and Diffusion Vol. 28 No. 3 (2007). [7] H. Okamoto, Binary Alloy Phase Diagrams, Vol. 2, ASM International, 2nd edition (1992) [8] H. Waqas, A.H. Qureshi, K. Subhan, M. Shahzad, Ceramics International 38 (2012) 1235–1240 [9] S.A. Gudin n, M.I.Kurkin,A.V.Gapontsev, Journal of Magnetism and Magnetic Materials 324 (2012) 4106–4113. [10] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, 1989. [11]李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2001。 [12] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [13] C. Weissmantle, “Ion Beam Deposition of Special Film Structure”, Vac. Sci. Technol., 18, 179 (1989). [14] T. C. Huang, G. Lim, F. Parmigiani, and E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985). [15] R. A. Roy, D. Yee, and J. J. Cuomo, J. Vac. Sci. Technol. A, 6, 1621 (1988). [16] H. R. Kaufman, R. S. Robinson, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). 第三章參考文獻 [1] C.H.Lai, P.H.Huang, J.Appl. Phys., 95, 7222 (2004). [2]林麗娟,”X光繞射原理及其應用”,工業材料86期。 [3] Bruce M. Moskoeitz, Hitchhhiker’s Guide to magnetism. [4]汪建民主編,”材料分析”,中國材料科學學會。 [5] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press (1996). [6]龔志榮,駱榮富,”電子顯微鏡教材大綱”。 [7] David Jiles,”Magnetism and Magnetic Materials”, Chapman & Hall,(1991). [8]林明彥、張嘉升、黎文龍,“原子力顯微鏡的原理(上)”,科儀新知第二十七卷 第二期 94.10。 [9] A. Ehresmann, I. Krug, A. Kronenberger, A. Ehlers, and D. Engel, J. Magn. Magn. Mater. 280, 369 (2004). [10] K. W. Lin, PhD. Thesis, State University of New York at Stony Brook,(2002). [11]Y. U. idzerda, L.H. Tjeng, H.-J. Lin, C.J. Gutierrez, G Meigs, C.T. Chen, Phys. Rev. B 48, 4144 (1993). [12]C. M. Schneider, Z. Celinski, M. Neuber, C. Wilde, M. Grunze, K. Meinel, JKirschner, J. Phys.: Condens. mater. 6, 1177 (1994). [13]黃迪靖,陳駿,張春富,吳文斌,鍾世俊,物理雙月刊,中華民國物理學會,2000年,12月,606頁。 [14] Research Institute for Solid State Physics and Optics, Budapest, Hungary. [15] 林煜修,國立清華大學碩士論文(2000)。 [16] C. Fermon et al., Physica B 283 (2000) 372. [17] C. Fermon, Physica B 213&214 (1995) 904. 第四章參考文獻 [1] John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”. [2] Ivanov-Emin B.N., Nevskaya N.A., Zaitsev B.E., Ivanova T.M. Zh. Neorg. Khimii 27, 3101 (1982). [3] P.Z. Si, D. Li, C.J. Choi, Y.B. Li, D.Y. Geng, Z.D. Zhang, Solid State Commun. 142, 723 (2007). [4] K.W. Lin, M.R. Wei, J.Y. Guo, J. Nanosci. Nanotechnol, 9, 2023 (2009). [5] A.E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552(1999). [6] S. Blomeier, D. McGrouther, R. O''Neill, S. McVitie, J.N. Chapman, M.C. Weber, B. Hillebrands, J. Fassbender J. Magn. Magn. Mater. 290-291, 731 (2005). [7] S. Brems, K. Temst, and C. Van Haesendonck, Phys. Rev. Lett., 99, 067201(2007). [8]J. McCord, C. Hamann, R. Schafer, and L. Schultz, Phys. Rev. B 78, 094419 (2008). [9] Changjun Jiang , Desheng Xue and Wenbo Sui, Thin Solid Films, 519, 2527(2011). [10] P. A. A. van der Heijden, T. F. M. M. Mass, J. C. S. Kools, F. Roozeboom, P. J. van der Zaag, and W. J. M. de Jonge, J. Appl. Phys. 83, 7207(1998). [11] Haiwen Xi, J. Magn. Magn. Matter. (2004). [12] M. Knobel, W. C. Nunes, H. Winnischofer, T. C. R. Rocha, L.M. Socolovsky, C.L. Mayorga, D.Zanchet, J. Non-crystalline. Solid, 353, 743(2007). [13] K.-W. Lin, M. Mirza, C. Shueh , H.-R. Huang, H.-F. Hsu, and J. van Lierop, Appl. Phys. Lett. 100, 122409 (2012). [14] H.-C. Su, M.-J. Huang, H.-J. Lin, C.-H. Lee, C.-T. Chen, C.-H. Liu, H.-F. Hsu, K.-W. Lin, and J. van Lierop 87, 014402 (2013). [15] Sandeep K.S. Patel, Namdeo S. Gajbhiye 330 (2013).en_US
dc.identifier.urihttp://hdl.handle.net/11455/11523-
dc.description.abstract本實驗主要分為兩大部分,利用雙離子束濺鍍系統製備(i) [鎳鐵/錳]薄膜,探討利用不同電壓(0 V、150 V)之輔助離子束(End-Hall)轟擊以及不同層數之鐵磁與反鐵磁層薄膜對磁性質之影響;(ii) [鎳鐵/鉻]薄膜,探討利用不同電壓(0 V、150 V)之輔助離子束(End-Hall)轟擊之交換耦合之關係。 [鎳鐵/錳]多層薄膜之鎳鐵層為面心立方(f.c.c.)結構(晶格常數為3.55 A),錳層具有體心立方(b.c.c.)結構之α-錳(晶格常數為8.91 A)所組合而成,晶粒大小介於7~16 nm之間。磁性質分析結果顯示50 K下未經由離子束轟擊之[Ni80Fe20/Mn]50多層薄膜矯頑磁力(HC)為165 Oe,而經由離子束轟擊過後(VEH=150 V)矯頑磁力(HC)增加為265 Oe,而交換偏壓場(HEX)呈現出相反之趨勢,由-20 Oe降至為-3 Oe。場冷及零場冷圖形中可知經由離子束轟擊後會改變其阻隔溫度(TB)。磁電阻量測得知經由離子束轟擊過後會使總磁阻率發生下降。X光磁圓偏振二向性自旋轉換磁耦合於鎳鐵薄膜中顯示出良好的一致性,而錳層卻沒有明顯之磁化現象。極化中子反射儀初步結果得知:樣品在低溫及室溫均具有鐵磁/反鐵磁耦合及不對稱自旋之行為。 [鎳鐵/鉻]多層薄膜之鉻層具有體心立方(b.c.c.)結構(晶格常數為2.90 A),晶粒大小約為10 nm。磁性質分析結果顯示在室溫下經由離子束轟擊過後(VEH=150 V)鐵磁訊號消失,顯示此樣品在室溫為順磁性。10 K下未經由離子束轟擊之[Ni80Fe20/Cr]50多層薄膜矯頑磁力(HC)為7 Oe,而經由離子束轟擊過後(VEH=150 V)矯頑磁力(HC)增加為250 Oe,而交換偏壓場(HEX) 由2 Oe增加為15 Oe。造成交換偏壓場(HEX)之變化,推測是經由離子束轟擊而造成薄膜磁矩重新排列或鎳、鐵、鉻原子互相混合的結果,而離子束轟擊可能導致薄膜產生缺陷進而使矯頑磁力提升。另外,經離子束轟擊後之樣品具有不同之場冷及零場冷曲線,可能由於原子間互相混合所致。zh_TW
dc.description.abstractThe experiment was divided into two parts, (i)Ni80Fe20/Mn and (ii)Ni80Fe20/Cr were prepared by dual ion-beam deposition technique. The structure and magnetic properties were investigated by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometry (VSM), and also Atomic Force Microscopy (AFM). (i) The structure is face-centered cubic NiFe (a~3.81 A) phase and body-centered cubic α-Mn (a~8.91 A) phase. Grain sizes ranged from 7 to 16 nm. Under 50 K without the ion beam bombardment of [Ni80Fe20/Mn]50 coercivity (HC) 165 Oe, and with ion beam bombardment coercivity (HC) increased to 265 Oe, and exchange bias (HEX) showing a contrary trend, from -20 Oe to -3 Oe. Field cooled and zero field cooled shows via ion beam bombardment will change its blocking temperature (TB). Magnetoresistance measurements after ion beam bombardment that will decreased. The interplay between interlayer coupling and exchange bias coupling in [NiFe/Mn] multilayer-based thin films was investigated by controlling the configurations from superlattice to nanocomposite or hybrid structured thin films using ion-beam bombardment during deposition. Results have shown that well-defined interfaces in the superlattice [NiFe/Mn] thin film exhibited interlayer coupling behavior. In contrast, an enhanced coercivity was observed in the nanocomposite [NiFe-Mn] thin film. However, the hybrid [NiFe-Mn]/[NiFe/Mn] thin film with an intermixed NiFeMn alloyed film component gave rise to unusual positive exchange bias coupling. (ii) The structure of body-centered cubic Cr (a~2.90 A) phase. Grain sizes ranged about 10 nm. Magnetometry results [NiFe-Cr] thin film is enhanced by ion-beam bombardment. Under 10 K without the ion bea bombardment of [Ni80Fe20/Cr]50 coercivity (HC) 7 Oe, and with ion beam bombardment coercivity (HC) increased to 250 Oe, and exchange bias (HEX) showing incresae from 2 Oe to 15 Oe. Especially, the Cuire temperature of [NiFe/Cr] was changed by ion-beam bombardment, the range from 160 K to 298 K.en_US
dc.description.tableofcontents目錄 致謝 I 摘要 II ABSTRACT III 目錄 V 表目錄 IX 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 基礎理論 3 1-2-1磁性物質簡介 3 1-2-2磁異向性(Magnetic anisotropy) 8 1-2-3場冷(FC)與零場冷(ZFC)之磁滯曲線比較 10 1-2-4磁電阻(Magnetoresistance) 11 1-3 交換耦合機制 12 1-3-1理論模型 14 1-3-2磁區結構-磁力顯微鏡(MFM) 18 1-4 應用 19 1-4-1巨磁阻(Giant Magneto Resistance) 19 1-4-2穿隧式磁電阻(Tunneling Magnetoresistance) 21 1-4-3自旋閥(Spin Valve)結構元件 21 1-4-4磁阻式隨機記憶體(Magnetoresistance Random Access Memory,MRAM) 22 1-5 實驗回顧 24 1-6 第一章參考文獻 25 第二章 實驗 27 2-1 實驗設計 27 2-2 材料選用 30 2-3 基材前處理 33 2-4 薄膜製備 34 2-5 雙離子束濺鍍系統(ION BEAM ASSISTED DEPOSITION,IBAD) 36 2-6 第二章參考文獻 41 第三章 分析儀器原理與介紹 42 3-1 X光繞射儀(X-RAY DIFFRACTION,XRD) 42 3-2穿透式電子顯微鏡(TRANSMISSION ELECTRON MICROSCOPY,TEM) 45 3-3 化學分析電子能譜儀(ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS,ESCA) 50 3-4 震動樣品磁力計(VIBRATING SAMPLE MAGNETOMETER,VSM) 51 3-5 原子力&磁力顯微鏡 (ATOMIC & MAGNETIC FORCE MICROSCOPY) 54 3-6 磁電阻量測(MAGNETORESISTANCE MEASUREMENT,MR) 57 3-7 X光磁圓偏振二向性(X-RAY MAGNETIC CIRCULAR DICHROISM,XMCD) 59 3-8 極化中子反射儀(POLARIZED NEUTRON REFLECTOMETRY,PNR) 61 3-9 第三章參考文獻 66 第四章 結果與討論 67 4-1 不同離子束轟擊及層數之[鎳鐵/錳]薄膜微觀結構之研究 67 4-1-1 X光繞射(XRD)分析 67 4-1-2穿透式電子顯微鏡(TEM)微結構分析 70 4-1-3掃描穿透式電子顯微鏡(STEM)量測 80 4-1-4化學分析電子能譜儀(ESCA)成份及縱深分析 85 4-1-5震動樣品磁力計(VSM)磁性量測 92 4-1-6原子力顯微鏡(AFM)/磁力顯微鏡(MFM)分析 103 4-1-7磁電阻(MR)量測 105 4-1-8 X光磁圓偏振二向性分析 107 4-1-9極化中子反射儀(PNR)分析 108 4-2 不同離子束轟擊之[鎳鐵/鉻]薄膜微觀結構之研究 110 4-2-1 X光繞射(XRD)分析 110 4-2-2穿透式電子顯微鏡(TEM)微結構分析 112 4-2-3震動樣品磁力計(VSM)磁性量測 116 4-2-4原子力顯微鏡(AFM)/磁力顯微鏡(MFM)分析 121 4-3 第四章參考文獻 122 第五章 結論 123zh_TW
dc.language.isozh_TWen_US
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2406201311325400en_US
dc.subject離子束轟擊zh_TW
dc.subjection beam bombardmenten_US
dc.subject交換偏壓zh_TW
dc.subjectexchange biasen_US
dc.title離子束轟擊[鎳鐵/錳]及[鎳鐵/鉻]薄膜之微結構及磁性質研究zh_TW
dc.titleThe studies of microstructures and magnetic properties of ion-beam bombarded [NiFe/Mn] and [NiFe/Cr] thin films.en_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.