Please use this identifier to cite or link to this item:
標題: 電鍍銅(錸)合金薄膜自形成錸擴散阻障層之研究
Electroplating of Cu(Re) Alloy Film for Self Formation of Re Diffusion Barrier
作者: 高琳潔
Kao, Lin-Chieh
關鍵字: 內連線;Interconnect;自形成擴散阻障層;銅(錸)合金;電鍍;Self-forming Diffusion Barrier;Cu(Re) Alloy;Electroplating
出版社: 材料科學與工程學系所
引用: [1] S.P. Murarka, “Multilevel interconnections for ULSI and GSI era”, Mater. Sci. Eng., R., 19 (1997) 87-151. [2] C.A. Chang, “Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures ”, J. Appl. Phys., 67 (1990) 566-569. [3] L. Stolt, and F.M. D’Heurle, “The formation of Cu3Si marker experiments”, Thin Solid Films, 189 (1990) 269-274. [4] M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, and H.T. Chiu, “Comparison of the diffusion barrier properties of chemical vapor deposited TaN and sputtered TaN between Cu and Si”, J. Appl. Phys., 79 (1996) 6032-6938. [5] K.H. Min, K.C. Chun, and K.B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization”, J. Vac. Sci. Technol. B, 14 (1996) 3263-3269. [6] K.C. Park, K.B. Kim, I.J.M.M. Raaijmakers, and K. Ngan, “The effect of density and microstructure on the performance of TiN barrier films in Cu metallization”, J. Appl. Phys., 80 (1996) 5674-5681. [7] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure on diffusion barrier properties in Cu metallization”, J. Electrochem. Soc., 145 (1998) 2164-2167. [8] H.Y. Cheng, Y.C. Chen, C.M. Lee, R.J. Chung, and T.S. Chin, “Thermal stability and electrical resistivity of SiTaNx heating layer for Phase-Change Memories”, J. Electrochem. Soc., 153 (2006) 685-691. [9] S. Rawal, D.P. Norton, H. Ajmera, T.J. Anderson, and L. McElwee-White, “Properties of Ta–Ge–(O)N as a diffusion barrier for Cu on Si”, Appl. Phys. Lett., 70 (2007) 051913. [10] P. Majumdera, and C. Takoudis, “Reactively Sputtered Mo–V Nitride Thin Films as Ternary Diffusion Barriers for Copper Metallization”, J. Electrochem. Soc., 155 (2008) 703-706. [11] C.W. Chen, J.S. Chen, and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, J. Electrochem. Soc., 155 (2008) 438-442. [12] L.C.Leu, D.P.Norton, L.McElwee, TJ, Aderson,“Properties of reactively sputtered W-B-N thin film as a diffusion barrier for Cu metallization on Si”, Appl. Phys. Lett., (2009) 94:691-695. [13] P. Majumder, and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects” Appl. Phys. Lett., 91 (2007) 162108. [14] P. Majumder, and C. Takoudis, “Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in.Cu interconnects”, Nanotechnology, 19 (2008) 205202. [15] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects” , Appl. Phys. Lett., 92 (2008) 111917. [16] Qi Xie, Yu-Long Jiang, Jan Musschoot, Davy Deduytsche, Christophe Detavernier, Roland L Van Meirhaeghe, Sven Van Den Berghe, Guo-Ping Ru, Bing-Zong Li, Xin-Ping Qu, “Ru thin film grown on TaN by plasma enhanced atomic layer deposition, Thin Solid Films, 517 (2009) 4689-4693. [17] J.J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technology, 39 (1996) 83-87. [18] 陳力俊,“微電子材料與製程”,中國材料科學學會,2002 年。 [19] S.P. Murarka, and S.W. Hymes, “Copper metallization for ULSL and beyond”, Crit.l Rev. Solid State, 20 (1995) 87-124. [20] R.S. Muller, and T.I. Kamins, “Device Electronics for Integrated Circuits”, 2nd ed., John Wiley & Sons, New York, (1986) P.1-56. [21] H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, Ch. Muller, and M. Dietlmeier, “Low dielectric constant materials for interlayer dielectric”, Microelectron. Eng., 40 (2003). [22] R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., 1970. [23] 莊達人,“VLSI 製造技術”,高立出版社,2006 年。 [24] A. Noya, and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, Jpn. J. Appl. Phys., 30 (1991) 1760-1763. [25] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectron. Eng., 33 (1997) 269-275. [26] T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S.Yamaguchi, and M. Murakami, “Diffusion barrier property of TaN between Si and Cu”, Appl. Surf. Sci., 99 (1996) 265-272. [27] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, J. Electrochem. Soc., 153 (2006) 578-581. [28] Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309-315. [29] Y. Wang, F. Cao, Y.T. Liu, and M.H. Ding, “Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Appl. Phys. Lett., 92 (2008) 032108. [30] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan, “Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization”, Appl. Phys. Lett., 92 (2008) 052109. [31] Shou-Yi Chang, Dao-sheng Chen, “10-nm-thick qulnary (AlCrTaTiZr)N film as effective diffusion barrier for copper interconnects at 900℃”, Appl. Phys. Lett., 94 (2007) 231909. [32] S.Y. Chang, C.Y. Wang, C.E. Li and Y.C. Huang, “5 nm-Thick (AlCrTaTiZrRu)N0.5 Multi-Component Barrier Layer with High Diffusion Resistance for Cu Interconnects”, Nanosci. Nanotechnol. Lett., 3 (2011) 289-293. [33] S.Y. Chang, and D.S. Chen, “(AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900°C”, Mater. Chem. Phys., 125 (2011) 5-8. [34] S.Y. Chang, and C.L. Lu, “Thermal Stability and Interface Diffusion Behaviors of Electrolessly Deposited CoWP and Cu Films”, J. Electrochem. Soc., 155 (2008) 234-243. [35] S.T. Lin, and C. Lee, “Characteristics of sputtered Ta–B–N thin films as diffusion barriers between copper and silicon”, Appl. Surf. Sci., 253 (2006) 1215-1221. [36] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Properties of reactively sputtered W–B–N thin film as a diffusion barrier for Cu metallization on Si”, Applied Physics A Material Science & Processing , 94 (2009) 691-695. [37] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, J. Electrochem. Soc., 153 (2006) 578-581. [38] Y.L. Kuo, C. Lee,T, J.C. Lin, Y.W. Yen, and W.H. Lee, “Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271. [39] S. Rawal, D.P. Norton, K. Kim, T.J. Anderson, and L. McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization on Si”, Appl. Phys. Lett., 89 (2006) 231914. [40] X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, and B.Z. Li, “Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization”, Appl. Phys. Lett., 88 (2006) 151912. [41] Qi Xie, Xin-Ping Qu, Jing-Jing Tan, Yu-Long Jiang, Mi Zhou, Tao Chen, and Cuo-Ping Ru,“Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Applied Surface Science, 253 (2006) 1666-1672. [42] Ken-ichi YOSHIMOTO, Satoko SHINKAI, and Katsutaka SASAKI, “Application of HfN/Hf Bilayered Film as a Diffusion Barrier for Cu Metallization System of Si Large-Scale Integration”, Jpn. J. Appl. Phys, 39 (2000) 1835-1839. [43] Ming-Hung Tsai, Jien-Wei Yen, and Jon-Yiew Gan, “Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon”, Thin solid films, 516 (2008) 5527-5530. [44] S.Y. Chang, C.E. Li, S.C. Chiang, and Y.C. Huanga, “4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects”, J. Alloy. Compd., 515 (2012) 4-7. [45] M. He, and T.M. Lu, “Chapter 7 Self-Forming Barriers”, Metal-Dielectric Interfaces in Gigascale Electronics, (2012) 91-108. [46] K. Ito, S.Tsukimoto, T. KABE, K. Tada, and M. Murakami, “Effects of Substrate Materials on Self-Formation of Ti-Rich Interface Layers in Cu(Ti) Alloy Films”, J. Electron, Mater., 36 (2007) 606-613. [47] J. Koike, M. Haneda, J. Iijima*, and M. Wada, “Cu Alloy Metallization for Self-Forming Barrier Process”, Proceedings of the IEEE 2006 International Interconnect Technology Conf., (2006) 161-163. [48] J. Iijima*, M. Haneda, and J. Koike, “Growth Behavior of Self-Formed Barrier Using Cu-Mn Alloys at 350 to 600 ℃”, IEEE, (2006) 155-157. [49] M. Haneda, J. Iijima, and J. Koike, “Growth behavior of self-formed barrier at Cu–Mn/SiO2 interface at 250–450 °C”, Appl. Phys. Lett., 90 (2007) 252107. [50] C. J. Liu, and J. S. Chen, “Low leakage current Cu(Ti)/SiO2 interconnection scheme with a self-formed TiOx diffusion barrier”, Appl. Phys. Lett., 80 (2002) 2678-2680. [51] C. J. Liu, J. S. Jeng, and J. S. Chen and Y. K. Lin, “Effects of Ti addition on the morphology, interfacial reaction, and diffusion of Cu on SiO2”, J. Vac. Sci. Technol. B, 20 (2002) 2361-2366. [52] S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M.Murakami, Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films”, J. Electron. Mater., 34 (2005) 592-599. [53] S. Tsukimoto, T. Onishi, K. Ito,M. Konno,T. Yanguchi,T. KaminoO, and M. Murakmi, “Fabrication of Cu(Ti) Alloy Interconnects with Self-Formation of Thin Barrier Metal Layers Using a High-Pressure Annealing Process”, J. Electron. Mater., 36 (2007) 1658-1661. [54] S. Tsukimoto, T. Kabe, K. Ito, and M. Murakami, “Effect of Annealing Ambient on the Self-Formation Mechanism of Diffusion Barrier Layers Used in Cu(Ti) Interconnects, J. Electron. Mater., 36 (2007) 258-265. [55] Kazuhiro Ito, Kazuyuki Kohama , Tomohisa Tanaka, Kenichi Mori, Kazuyoshi Maekawa, Yasuharu Shirai, and Masanori Urakami, “Ti-Rich Barrier Layers Self-Formed on Porous Low-k Layers Using Cu(1 at.% Ti) Alloy Films”, J. Electron. Mater., 39 (2010) 1326-1333. [56] D.C.Perng , J.B. Yeh, K.C. Hsu, and S.W. Tsai, “Self-forming AlOx layer as Cu diffusion barrier on porous low-k film”, Thin Solid Films, 518 (2010) 1648-1652. [57] W. H. Lee, H. L. Cho, B. S. Cho, J. Y. Kim, W. J. Nam, Y-S. Kim, W. G. Jung, H. Kwon, J. H. Lee, J. G. Lee, P. J. Reucroft, C. M. Lee, and E. G. Lee, “Diffusion barrier and electrical characteristics of a self-aligned MgO layer obtained from a Cu(Mg) alloy film”, Appl. Phys. Lett., 77 (2000) 2192-2194. [58] Wonhee Lee, Heunglyul Cho, Bumseok Cho, Jiyoung Kim, Yong-suk Kim, Woo-Gwang Jung, Hoon Kwon, Jinhyung Lee, Chongmu Lee, and P. J. Reucroft, “Effect of Mg content in Cu(Mg)/SiO2/Si multilayers on the resistivity after annealing in an oxygen ambient”, J. Vac. Sci. Technol. A, 18 (2000) 2972-2977. [59] Wonhee Lee,Heunglyul Cho, Bumseok Cho, Jioung Kim, Yong-Suk Kim, Woo-Gwang Jung, Hoon Kwon, Jinhyung Lee, P. J.Reucroft, Chongmu Lee, and Jaegab Lee, “Factors Affecting Passivation of Cu(Mg) Alloy Films”, J. Electrochem. Soc., 147 (2000) 3066-3069. [60] M. J. Frederick, R. Goswami, and G. Ramanath, “Sequence of Mg segregation, grain growth, and interfacial MgO formation in Cu–Mg alloy films on SiO2 during vacuum annealing”, J. Appl. Phys., 93 (2003) 5966-5972. [61] J. P. Chu, C. H. Lin, and V. S. John, “Cu films containing insoluble Ru and RuNX on barrierless Si for excellent property improvements”, Appl. Phys. Lett., 91 (2007) 132109. [62] C.H. Lin, W.K. Leau, and C.H. Wu, “The Application of Barrierless Metallization in Making Copper Alloy, Cu(RuHfN), Films for Fine Interconnects”, J. Electron. Mater., 39 (2010) 2441-2447. [63] Ying Wang, Mi-lin Zhang, Fei Cao, Yun-tao Liu, and Lei Sha, “Interficial stability of Cu/Cu(Ru)/Si contact system for barrier-free copper metallization”, Journal of Alloys and Compounds, 509 (2011) L180-L182. [64] Ying Wang, Fei Cao, Mi-lin Zhang, and Yun-tao Liu, “Comparative study of Cu–Zr and Cu–Ru alloy films for barrier-free Cu metallization”, Thin Solid Films, 519 (2011) 3407-3410. [65] C. J. Liu, and J. S. Chen, “High-temperature self-grown ZrO2 layer against Cu diffusionat Cu(2.5 at. % Zr)/SiO2 interface”, J. Vac. Sci. Technol. B, 23 (2005) 90-94. [66] Ying Wang, Fei Cao, Mi-lin Zhang, and Tao Zhang, “Property improvement of Cu–Zr alloy films with ruthenium addition for Cu metallization”, Acta Materialia, 59 (2011) 400-404. [67] Z.X. Song, J.A. Wang, Y.H. Li, F. Ma, K.W. Xu, and S.W. Guo, “The self-formation graded diffusion barrier of Zr/ZrN”, Microelectronic Engineering, 87 (2010) 391-393. [68] Ying Wang, Fei Cao, Mi-lin Zhang, and Yun-tao Liu, “Effects of thermal annealing on Zr–N doped magnetron sputtered copper”, Thin Solid Films, 519 (2011) 3407-3410. [69] C. J. Liu, J. S. Chen, and Y. K. Lin, “Characterization of Microstructure, Interfacial Reaction and Diffusion of Immiscible Cu(Ta) Alloy Thin Film on SiO2 at Elevated Temperature”, Journal of The Electrochemical Society, 151 ( 2004) G18-G23. [70] Dung-Ching Perng, Kuo-Chung Hsu, and Jia-Bin Yeh, “A 3nm Self-Forming InOx Diffusion Barrier for Advanced Cu/Porous Low-k Interconnects”, J. Appl. Phys., 49 (2010) 05FA04. [71] J. Koikea, and M. Wada, “Self-forming diffusion barrier layer in Cu–Mn alloy metallization”, Appl. Phys. Lett., 87 (2005) , 041911. [72] T. Usui, H, Nasu, J. Koike, M Wada, S. Takahashi, N. Shimizu, T. Nishikawa, M. Yoshimaru, and H. Shibata, “Low resistive and highly reliable Cu dual-damascene interconnect technology using self-formed mnSixOy barrier layer”, IEEE, (2005) 188-190. [73] Y. Ohoka, K. Inoue, T. Hayashi, N. Komai, S. Arakawa, R. Kanamura, and S. Kadomura, “Integration of Self-Formed Barrier Technology for 32nm-node Cu Dual-Damascene Interconnects with Hybrid Low-k (PAr/SiOC) Structure”, IEEE, Symposium on VLSI Technology Digest of Technical Papers (2006). [74] Takamasa Usui, Hayato Nasu, Shingo Takahashi, Noriyoshi Shimizu, T. Nishikawa,Masaki Yoshimaru, Hideki Shibata, Makoto Wada, and Junichi Koike, “Highly Reliable Copper Dual-Damascene Interconnects With Self-Formed MnSixOy Barrier Layer”, IEEE Transactions on Electron Devices, 53 (2006) 2492-2499. [75] T. Usui, K. Tsumura, H. Nasu, Y. Hayashi, G. Minamihaba, H. Toyoda, H, Sawada, S. Ito, H. Miyajima, K. Watanabe, M. Shimada, A. Kojima, Y. Uozumi, and H. Shibata, “High Performance Ultra Low-k (k=2.0/keff=2.4)/Cu Dual-Damascene Interconnect Technology with Self-Formed MnSixOy Barrier Layer for 32 nm-node”, IEEE, (2006) 216-218. [76] J. Koike, M. Haneda, J. Iijima, and M. Wada, “Cu Alloy Metallization for Self-Forming Barrier Process”, IEEE, (2006) 161-163. [77] J. Iijima, M. Haneda, and J. Koike, “Growth Behavior of Self-Formed Barrier Using Cu-Mn Alloys at 350 to 600℃”, IEEE, (2006) 155-157. [78] Y. Ohoka, Y. Ohba, A. Isobayashi, T. Hayashi, N. Komai, S. Arakawa, R. Kanamura and S. Kadomura, “Integration of high performance and low cost Cu/ultra low-k SiOC(k=2.0) interconnects with self-formed barrier technology for 32nm-node and beyond”, IEEE, (2007) 67-69. [79] J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi, “Growth kinetics and thermal stability of a self-formed barrier layer at Cu-Mn/SiO2 interface”, J. Appl. Phys., 102 (2007) 043527. [80] M. Haneda, J. Iijima, and J. Koike, “Growth behavior of self-formed barrier at Cu–Mn/SiO2 interface at 250–450°C”, Appl. Phys. Lett., 90 (2007) 252107. [81] J. M. Ablett, J. C. Woicik, Zs. Tőkei, S. List, and E. Dimasi, “Phase identification of self-forming Cu–Mn based diffusion barriers on p-SiOC:H and SiO2 dielectrics using x-ray absorption fine structure”, Appl. Phys. Lett., 94 (2009) 042112. [82] Y. Otsuka, J. Koike, H. Sako, K. Ishibashi, N. Kawasaki, S. M. Chung, and I. Tanaka, “Graded composition and valence states in self-forming barrier layers at Cu–Mn/SiO2 interface”, Appl. Phys. Lett., 96 (2010) 012101. [83] G.S. Chen a, S.T. Chen b, and Y.L. Lu, “A new seeding and electroless approach to alloying, direct patterning, and self-forming barriers for Cu thin-film nanostructures”, Electrochemistry Communications, 12 (2010) 1483-1486. [84] Chon-Hsin Lin, Wen-Kuan Leau, and Cheng-Hui Wu, “Copper–Holmium Alloy Film for Reliable Interconnects”, J Appl. Phys., 49 (2010) 05FA03. [85] X.Y. Zhanga, X.N. Li a, L.F. Niea, J.P. Chub, Q. Wanga, C.H. Linc ,and C. Donga, “Highly stable carbon-doped Cu films on barrierless Si”, Appl. Surf. Sci. , 257 (2011) 3636–3640. [86] L. F. Nie, X. N. Li, J. P. Chu, Q. Wang, C. H. Lin, and C. Dong, “High thermal stability and low electrical resistivity carbon-containing Cu film on barrierless Si”, Appl. Phys. Lett., 96 (2012) 182105. [87] Adi Naor, Noam Eliaz, Eliezer Gileadi, and S. Ray Taylor, “Properties and Applications of Rhenium and Its Alloys”, The AMMTIAC Quarterly, 5 (2010) 11-15. [88] Diaz, J.J., “Pure Rhenium Metal”, IEEE, (1996) 37-39. [89] Boris D.Bryskin, “Rhenium and Rhenium Alloys”, TMS, (1997). [90] 賴耿陽,“貴金屬元素化學與應用”,復漢出版社有限公司,1999年。 [91] Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM International, 2 (1990) 1464. [92] IBM Technical Disclosure Bulletin, “Diffusion Barrier between Coppre and silicon”, (1992) 214-215. [93] 莊達人,“VLSI製造技術”,高立圖書有限公司,2006年。 [94] P.Doppelt, and T.H.Baum, “Chemical Vapor Deposition of Copper for IC Metalization: precursor chemistry and molecular structure”, MRS Bulletin, 41 (1994). [95] P.Doppelt, and T.H.Baum, “The Chemical Vapor Deposition of Copper and Copper alloys”, Thin solid Films, 270 (1995). [96] V.M. Dubin, Y. Shacam-Diamand, B. Zhao, P.K. Vasuder,and C.H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration”, J.Electrochem. Soc., 144 (1997) 898-908. [97] H.H. Hsu, J.W. Yeh, and S.J. Lin, “Repeated 3D Nucleation in Eledtroless Cu Deposition and the Grain Boundary Structure Involved”, J. Electrochem. Soc., 150 (2003). [98] R.J.contolini, L.Tarte, R.T.Graff, and L.B.Evans, “Copper Electroplating Process for Sub-half-micron ULSI structure”, IEEE VMIC Conf., 322 (1995). [99] Golden, T. D., and M. G. Shumsky, “Electrochemical deposition of copper(I) oxide films”, Chemistry of Materials, 8 (1996) 2499-2504. [100] H.G. Creutz, R. M. Stevenson, and E. A. Romanowski, “Electrodeposition of Copper From Acidic Bath”, U.S. Pat. 3,267,010, (1996). [101] 蘇葵陽,“實用電鍍理論與實際工業用書”,新文京開發出版股份有限公司,1981年。 [102] 熊楚強及王月,“電化學”,新文京開發出版股份有限公司,2004年。 [103] D.J. O’Connor, and B.A. Sexton, “Surface Analysis Methods in Materials Science”, Springer, (2003). [104] 羅正忠及張鼎張譯,“半導體製程技術導論”,台灣培生,1992 年。 [105] 許樹恩及吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會,1993年。 [106] 潘扶民,“科儀新知”,1991年。 [107] J.I.Goldstein et al., “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed., Plenum Press, (2003). [108] A. Atrens and A. S. Lim, Applied Physics A, 51 (1990) 411-418. [109] A. Rochefort, J. C. Bertolini, M. Abon and P. Delichere, Physical Electronics Division. [110] G. Haemers, J.J. Verbist and S. Maroie, Applications of Surface Science, 17 (1984) 463-476.
在現階段銅內連線結構尺寸不斷微縮的趨勢之下,如何在僅數奈米等級厚度的前提下來形成一具高熱穩定性及低電阻係數的擴散阻障層,乃是半導體技術領域中的一項重要課題。因此,本研究便以電鍍法於矽基板上沉積銅(錸)合金薄膜,藉由退火製程後,在純銅薄膜與矽基板界面處自形成一薄錸擴散阻障層。經擴散阻障性質分析發現,銅(錸)合金薄膜結構於 400°C 退火後,在銅矽界面沒有銅矽化合物產生,且電阻率從初沉積時的高電阻率大幅降低,顯示所自形成之擴散阻障層具有足夠擴散阻障能力來避免銅與矽之間交互擴散並發生反應。本研究提供一種自形成擴散阻障層,能夠藉由退火製程提供優異的電性性質,且同時達到既薄又具有高熱穩定性,此潛力將使自形成錸擴散阻障層有機會發展為下一世代超大積體電路 (ULSI) 需求之擴散阻障層材料。

As the scale of copper interconnect structures continually decreases, to form an effective diffusion barrier layer, of only several nanometers thick, with high thermal stability and low electrical resistivity is a very important issue at the current stage of semiconductor manufacturing technology. Thus in this study, a Cu(Re) film was deposited on Si substrates by electroplating for self-formation of a thin Re diffusion barrier layer at the Cu/Si interfaces during thermal annealing. Experimental results regarding the analyses of diffusion resistance indicated that, after annealing at 400�C for 30 min, no copper silicides were formed at the Cu/Si interface, and the high electrical resistivity of the as-deposited Cu(Re) alloy film decreased to a low value, revealing the high resistance of the self-forming Re diffusion barrier layer to the interdiffusion of Cu and Si. Conclusively, the present study provides a thin and robust diffusion barrier that can self-form during annealing, with a good electrical property and thermal stability. The Cu(Re) self-forming barrier of high potential is promising for the use as an interconnect material in next-generation ultra-large-scale integrated (ULSI) devices.
其他識別: U0005-1311201212515700
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.