Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11544
標題: 類鑽碳多層膜對薄膜型氮化鎵發光二極體特性之影響研究
Effects of Diamond-Like Carbon Multilayers on Characteristics of Thin-Film GaN LEDs
作者: 錢振宏
Cian, Jhen-Hong
關鍵字: 類鑽碳;DLC;薄膜氮化鎵;精密電鍍;雷射剝離技術;Thin film GaN;Electroplating;Laser lift-off
出版社: 材料科學與工程學系所
引用: [1] H.Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett., vol. 58, pp. 1010-1012, 1991. [2] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE ., vol. 85, pp. 1752-1764, 1997. [3] H. Sugawara, K. ltaya, H. Nozaki and G. Hatakoshi, “High-brightness lnGaAlP green light-emitting diodes,” App. Phys. Lett., vol. 61, pp. 1775-1777, 1993. [4] G. B. Stringfellow, “High brightness light emitting diode”, Academic Press Inc. Boston, pp. 149-219, 1997. [5] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” pp. 6-10, Berlin: Springer, 2000. [6] S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitters Diodes,” pp. 11-17, London: Taylor and Francis, 2000. [7] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” pp. 5-9, New York: Wiley, 2002. [8] M. R. Krames, M. Ochinai-Holocomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. –H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. –W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999. [9] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light–output enhancement in a nitride-based light-emitting diode with 22 undercut sidewalls,” IEEE Photon. Technol. Lett., vol. 17, NO. 1, pp. 19-21, 2005. [10] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, NO. 2, pp. 288-290, 2005. [11] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. App. Phys., vol. 93, pp. 9383-9385, 2003. [12] T. Egawa, B. Zhang, and H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD,” IEEE Electron Device Lett., vol. 26, NO. 3, pp. 169-171, 2005. [13] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go¨ tz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” App. Phys. Lett., vol. 78, pp. 3379-3381, 2001. [14] R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding App. Phys. Lett., vol. 82, pp. 4011-4013, 2003. [15] R. H. Horng, D. S. Wuu, S. C. Wei, and C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” App. Phys. Lett., Vol. 75, pp. 3054-3056, 1999. [16] M. K. Kelly, O. Ambacher, B. Dahlheimer , G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol. 69, pp. 1749-1751, 1996. [17] W. S. Wong, and T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, pp. 1360-1362, 1999. [18] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys., vol. 89, pp. 1527-1536, 2001. [19] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, 台北, 台灣, pp. 104-115, 2000. [20] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版,高立圖書有限公司, 台北, 台灣, pp. 192-206, 2000. [21] D. K. Schroder, Semiconductor Material and Device Characterization , 1990. [22] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys., vol. 80, pp. 1190-1200, 1996. [23] 史光國, “半導體發光二極體及固態照明,” 全華科技圖書股份有 限公司出版, pp. 2-1 - 2-72, 2005. [24] E. Herbert Li, Chun-Chung Chan, and P. C. K. Kwok, “Optimization of textured-surface light emitting diode,” Electron Devices Meeting, 1998. Proceedings., 1998 IEEE Hong Kong, pp.6-9, 1998. [25] P. C. K. Kwok, C. C. Chan and E. Herbert Li, “Designing an external efficieny of over 30% for light emitting diode,” Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE, vol. 1, pp.187-188, 1998. [26] Lumileds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4. [27] Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, Appl. Phys. Lett. 86, 031907 (2005). [28] S. Todoroki, M. Sawai, and K. Aiki, J. Appl. Phys. 58, pp.1124-1128 (1985). [29] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys. vol. 83, pp.3172-3175 (1998). [30] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 74, pp.1275-1277 (1999). [31] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. vol. 86, pp.4491-4497 (1999). [32] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett. vol. 78, pp.3265-3267 (2001). [33] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE Photon. Technol. Lett., vol. 15, pp.646-648 (2003). [34] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 79, pp.2925-2927 (2001). [35] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu “High brightness InGaN green LEDs with an ITO on n/sup ++/-SPS upper contact,” Electron Devices, IEEE Transactions on. vol. 50, pp.2208-2212 (2003). [36] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett. vol. 74, pp.3930-3932 (1999). [37] J. H. Son, H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN,” Appl. Phys. Lett. vol. 85, pp.4421-4423 (2004). [38] J. Robertson, “Diamond-like amorphous carbon”, Mat. Sci. and Eng., 37, pp.129-281 (2002). [39] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys. vol. 89, pp.1527-1536 (2001). [40] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, vol. 36, pp.281-284 (2005). [41] M. V. Allmen and A. Blastter, “Laser-Beam Interactions with Materials: Physical Principles and Application”, Berlin, 2nd Springer Publisher (1995). [42] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum,” Phys. Stat. Sol. (a) vol. 26, pp.353-357 (1974). [43] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys. vol. 76, pp.236-241 (1994). [44] M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Appl. Phys. Lett. vol. 63, pp.3625-3627 (1993). [45] W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” J. Electronic Mater. vol. 28, pp.1409-1413 (1999). [46] W. S. Wong, J. Kruger, Y. Cho, B. P. Linder, E. R. Weber, N. W. Cheung, and T. Sands, “Selective UV-laser processing for lift-off of GaN thin films from sapphire substrates,” in Proc. Symp. On Light Emitting Devices for Optoelectronic Applications and State-of—the-Art Program on Compound Semiconductors XXVIII. vol. 98-2, pp.377-384 (1998). [47] D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, and J. M. Redwing, “Crystallographic Wet Chemical Etching of p-Type GaN,” J. Electrochem. Soc. vol. 147 (2), pp.763-764 (2000). [48] A. Shintani, and S. Minagawa, “Etching of GaN Using Phosphoric Acid,” J. Electrochem. Soc. vol. 123 (5), pp.706-713 (1976). [49] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. vol. 69, pp.503-505 (1996).
摘要: 
論文主要將高導熱之類鑽碳薄膜應用於薄膜型氮化鎵發光二極體(Thin-film GaN LED),藉由精密電鍍技術(Electroplating)製作一具有金屬銅基板之薄膜氮化鎵發光二極體,搭配反射率達92 %之鎳/銀(Ni/Ag)鏡面及雷射剝離技術(Laser lift-off, LLO),目的為製作一高亮度與高散熱特性之薄膜氮化鎵發光二極體。本論文導入類鑽碳膜層主要是降低元件之熱阻,進而使元件整體溫度降低。因此於大電流操作下,發光二極體具有良好的光輸出功率與電光轉換效率。
電性方面,在小電流20 mA注入下,有類鑽碳膜與無類鑽碳膜之薄膜氮化鎵發光二極體其操作電壓分別為2.82 V與2.84 V;當大電流350 mA注入下,有類鑽碳膜與無類鑽碳膜之薄膜氮化鎵發光二極體其操作電壓分別為3.56 V與3.64 V。在-5 V操作電壓下,兩者的漏電流均小於1 µA之標準。光特性方面,在大電流700 mA注入下,有類鑽碳膜與無類鑽碳膜之薄膜氮化鎵發光二極體其光輸出功率分別為500.5 mW與487.7 mW;電光轉換效率分別為20.1 %與17.4 %。在熱特性方面,以紅外線熱影像分析晶片表面溫度,在大電流1400 mA注入下,分別為有類鑽碳膜146.86 ℃及無類鑽碳膜206.02 ℃;以暫態熱阻量測分析儀測得各元件之整體熱阻值為有類鑽碳膜21.3 K/W及無類鑽碳膜26.3 K/W。

In this study, a n-side up vertical-type thin-film GaN light emitting diodes (LEDs) with high thermal conductivity diamond-like carbon (DLC) film and Ni/Ag mirror have been fabricated by laser lift-off (LLO) and electroplating technique. This thesis introduces the DLC layer to reduce the junction temperature of LEDs, therefore decreasing the thermal resistance. Thus, the n-side up thin film LEDs presents good light power output and electro-optical conversion efficiency under high current operation.
In terms of electrical property, injecting a small current of 20 mA into the thin film GaN LEDs with and without DLC layer, the operating voltages were 2.82 V and 2.84 V, respectively. While injecting a higher current of 350 mA into the thin film GaN LEDs with and without DLC layer, the operating voltages were 3.56 V and 3.64 V, respectively. The leakage currents (@-5 V) of these devices were less than 1 µA. In terms of optical property, during the injection as high current as 700 mA, the output power of the thin film GaN LEDs with and without DLC film were 500.5 mW and 487.7 mW and the optical conversion efficiency were 20.1% and 17.4%, respectively. IR and T3ster system measurements can obtain the characteristic of thermal conductivity. In terms of thermal property, applying IR thermograph to analyze the surface temperature of the microchip. Under the injection as much higher current as 1400 mA, the surface temperature with and without DLC were 146.86 ℃ and 206.02 ℃, and the thermal resistances were 21.3 K/W and 26.3 K/W, respectively. From the above data, they suggest that the DLC can play a good thermal dissipation layer and effectively reduces the surface temperature of LEDs and thermal resistance.
URI: http://hdl.handle.net/11455/11544
其他識別: U0005-3108201209081100
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.