Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11544
DC FieldValueLanguage
dc.contributor武東星zh_TW
dc.contributor.author錢振宏zh_TW
dc.contributor.authorCian, Jhen-Hongen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:47:48Z-
dc.date.available2014-06-06T06:47:48Z-
dc.identifierU0005-3108201209081100en_US
dc.identifier.citation[1] H.Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett., vol. 58, pp. 1010-1012, 1991. [2] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE ., vol. 85, pp. 1752-1764, 1997. [3] H. Sugawara, K. ltaya, H. Nozaki and G. Hatakoshi, “High-brightness lnGaAlP green light-emitting diodes,” App. Phys. Lett., vol. 61, pp. 1775-1777, 1993. [4] G. B. Stringfellow, “High brightness light emitting diode”, Academic Press Inc. Boston, pp. 149-219, 1997. [5] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” pp. 6-10, Berlin: Springer, 2000. [6] S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitters Diodes,” pp. 11-17, London: Taylor and Francis, 2000. [7] A. Zukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid-State Lighting,” pp. 5-9, New York: Wiley, 2002. [8] M. R. Krames, M. Ochinai-Holocomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. –H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. –W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999. [9] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light–output enhancement in a nitride-based light-emitting diode with 22 undercut sidewalls,” IEEE Photon. Technol. Lett., vol. 17, NO. 1, pp. 19-21, 2005. [10] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, NO. 2, pp. 288-290, 2005. [11] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. App. Phys., vol. 93, pp. 9383-9385, 2003. [12] T. Egawa, B. Zhang, and H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD,” IEEE Electron Device Lett., vol. 26, NO. 3, pp. 169-171, 2005. [13] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go¨ tz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” App. Phys. Lett., vol. 78, pp. 3379-3381, 2001. [14] R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding App. Phys. Lett., vol. 82, pp. 4011-4013, 2003. [15] R. H. Horng, D. S. Wuu, S. C. Wei, and C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” App. Phys. Lett., Vol. 75, pp. 3054-3056, 1999. [16] M. K. Kelly, O. Ambacher, B. Dahlheimer , G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol. 69, pp. 1749-1751, 1996. [17] W. S. Wong, and T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, pp. 1360-1362, 1999. [18] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys., vol. 89, pp. 1527-1536, 2001. [19] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版, 高立圖書有限公司, 台北, 台灣, pp. 104-115, 2000. [20] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版,高立圖書有限公司, 台北, 台灣, pp. 192-206, 2000. [21] D. K. Schroder, Semiconductor Material and Device Characterization , 1990. [22] V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys., vol. 80, pp. 1190-1200, 1996. [23] 史光國, “半導體發光二極體及固態照明,” 全華科技圖書股份有 限公司出版, pp. 2-1 - 2-72, 2005. [24] E. Herbert Li, Chun-Chung Chan, and P. C. K. Kwok, “Optimization of textured-surface light emitting diode,” Electron Devices Meeting, 1998. Proceedings., 1998 IEEE Hong Kong, pp.6-9, 1998. [25] P. C. K. Kwok, C. C. Chan and E. Herbert Li, “Designing an external efficieny of over 30% for light emitting diode,” Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ’98. IEEE, vol. 1, pp.187-188, 1998. [26] Lumileds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4. [27] Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, Appl. Phys. Lett. 86, 031907 (2005). [28] S. Todoroki, M. Sawai, and K. Aiki, J. Appl. Phys. 58, pp.1124-1128 (1985). [29] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys. vol. 83, pp.3172-3175 (1998). [30] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 74, pp.1275-1277 (1999). [31] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. vol. 86, pp.4491-4497 (1999). [32] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett. vol. 78, pp.3265-3267 (2001). [33] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE Photon. Technol. Lett., vol. 15, pp.646-648 (2003). [34] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 79, pp.2925-2927 (2001). [35] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu “High brightness InGaN green LEDs with an ITO on n/sup ++/-SPS upper contact,” Electron Devices, IEEE Transactions on. vol. 50, pp.2208-2212 (2003). [36] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett. vol. 74, pp.3930-3932 (1999). [37] J. H. Son, H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN,” Appl. Phys. Lett. vol. 85, pp.4421-4423 (2004). [38] J. Robertson, “Diamond-like amorphous carbon”, Mat. Sci. and Eng., 37, pp.129-281 (2002). [39] P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys. vol. 89, pp.1527-1536 (2001). [40] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, vol. 36, pp.281-284 (2005). [41] M. V. Allmen and A. Blastter, “Laser-Beam Interactions with Materials: Physical Principles and Application”, Berlin, 2nd Springer Publisher (1995). [42] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum,” Phys. Stat. Sol. (a) vol. 26, pp.353-357 (1974). [43] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys. vol. 76, pp.236-241 (1994). [44] M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Appl. Phys. Lett. vol. 63, pp.3625-3627 (1993). [45] W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” J. Electronic Mater. vol. 28, pp.1409-1413 (1999). [46] W. S. Wong, J. Kruger, Y. Cho, B. P. Linder, E. R. Weber, N. W. Cheung, and T. Sands, “Selective UV-laser processing for lift-off of GaN thin films from sapphire substrates,” in Proc. Symp. On Light Emitting Devices for Optoelectronic Applications and State-of—the-Art Program on Compound Semiconductors XXVIII. vol. 98-2, pp.377-384 (1998). [47] D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, and J. M. Redwing, “Crystallographic Wet Chemical Etching of p-Type GaN,” J. Electrochem. Soc. vol. 147 (2), pp.763-764 (2000). [48] A. Shintani, and S. Minagawa, “Etching of GaN Using Phosphoric Acid,” J. Electrochem. Soc. vol. 123 (5), pp.706-713 (1976). [49] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. vol. 69, pp.503-505 (1996).en_US
dc.identifier.urihttp://hdl.handle.net/11455/11544-
dc.description.abstract論文主要將高導熱之類鑽碳薄膜應用於薄膜型氮化鎵發光二極體(Thin-film GaN LED),藉由精密電鍍技術(Electroplating)製作一具有金屬銅基板之薄膜氮化鎵發光二極體,搭配反射率達92 %之鎳/銀(Ni/Ag)鏡面及雷射剝離技術(Laser lift-off, LLO),目的為製作一高亮度與高散熱特性之薄膜氮化鎵發光二極體。本論文導入類鑽碳膜層主要是降低元件之熱阻,進而使元件整體溫度降低。因此於大電流操作下,發光二極體具有良好的光輸出功率與電光轉換效率。 電性方面,在小電流20 mA注入下,有類鑽碳膜與無類鑽碳膜之薄膜氮化鎵發光二極體其操作電壓分別為2.82 V與2.84 V;當大電流350 mA注入下,有類鑽碳膜與無類鑽碳膜之薄膜氮化鎵發光二極體其操作電壓分別為3.56 V與3.64 V。在-5 V操作電壓下,兩者的漏電流均小於1 µA之標準。光特性方面,在大電流700 mA注入下,有類鑽碳膜與無類鑽碳膜之薄膜氮化鎵發光二極體其光輸出功率分別為500.5 mW與487.7 mW;電光轉換效率分別為20.1 %與17.4 %。在熱特性方面,以紅外線熱影像分析晶片表面溫度,在大電流1400 mA注入下,分別為有類鑽碳膜146.86 ℃及無類鑽碳膜206.02 ℃;以暫態熱阻量測分析儀測得各元件之整體熱阻值為有類鑽碳膜21.3 K/W及無類鑽碳膜26.3 K/W。zh_TW
dc.description.abstractIn this study, a n-side up vertical-type thin-film GaN light emitting diodes (LEDs) with high thermal conductivity diamond-like carbon (DLC) film and Ni/Ag mirror have been fabricated by laser lift-off (LLO) and electroplating technique. This thesis introduces the DLC layer to reduce the junction temperature of LEDs, therefore decreasing the thermal resistance. Thus, the n-side up thin film LEDs presents good light power output and electro-optical conversion efficiency under high current operation. In terms of electrical property, injecting a small current of 20 mA into the thin film GaN LEDs with and without DLC layer, the operating voltages were 2.82 V and 2.84 V, respectively. While injecting a higher current of 350 mA into the thin film GaN LEDs with and without DLC layer, the operating voltages were 3.56 V and 3.64 V, respectively. The leakage currents (@-5 V) of these devices were less than 1 µA. In terms of optical property, during the injection as high current as 700 mA, the output power of the thin film GaN LEDs with and without DLC film were 500.5 mW and 487.7 mW and the optical conversion efficiency were 20.1% and 17.4%, respectively. IR and T3ster system measurements can obtain the characteristic of thermal conductivity. In terms of thermal property, applying IR thermograph to analyze the surface temperature of the microchip. Under the injection as much higher current as 1400 mA, the surface temperature with and without DLC were 146.86 ℃ and 206.02 ℃, and the thermal resistances were 21.3 K/W and 26.3 K/W, respectively. From the above data, they suggest that the DLC can play a good thermal dissipation layer and effectively reduces the surface temperature of LEDs and thermal resistance.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1-1 前言 1 1-2 發光二極體之歷史演進 1 1-3 研究背景與動機 3 1-4 研究方向與架構 6 第二章 發光二極體理論模型簡介 8 2-1 光電特性 8 2-2 金屬與半導體接面之影響 8 2-2-1 金屬/半導體接觸之原理 8 2-2-2 歐姆接觸之原理 9 2-3 氮化鎵發光二極體光取出之模型 11 2-4 提升光之取出機率 12 2-4-1 snell’s Law 12 2-4-2 表面粗化之理論模型 13 2-5 熱效應對發光二極體之影響 13 第三章 元件製作流程 15 3-1 前言 15 3-2 具類鑽碳膜層之薄膜氮化鎵發光二極體製作 15 3-2-1 氮化鎵試片之磊晶結構 15 3-2-2 試片之清洗 15 3-2-3 定義晶粒大小之平台蝕刻 16 3-2-4 反射鏡面及歐姆接觸層 16 3-2-5 電流阻障層 17 3-2-6 類鑽碳膜層 17 3-2-7 電鍍鎳鈷與電鍍銅基板 18 3-2-8 藍寶石基板之剝離 19 3-2-9 n型電極之平台蝕刻 20 3-2-10 表面粗化製作 21 3-2-11 n型電極製作 21 3-3 元件切割、打線與封裝 21 第四章 結果與討論 22 4-1 前言 22 4-2 n型電極平台蝕刻深度之探討 22 4-3 u-GaN磊晶層與n-GaN電極平台表面粗化之探討 22 4-4 元件光電熱特性分析 23 4-4-1 電流-電壓特性 23 4-4-2 光輸出功率與電光轉換效率 24 4-4-3 暫態熱阻量測 25 4-4-4 紅外線熱影像分析儀量測 26 4-4-5 冷熱衝擊測試 27 第五章 結論與未來展望 29 參考文獻 31zh_TW
dc.language.isozh_TWen_US
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3108201209081100en_US
dc.subject類鑽碳zh_TW
dc.subjectDLCen_US
dc.subject薄膜氮化鎵zh_TW
dc.subject精密電鍍zh_TW
dc.subject雷射剝離技術zh_TW
dc.subjectThin film GaNen_US
dc.subjectElectroplatingen_US
dc.subjectLaser lift-offen_US
dc.title類鑽碳多層膜對薄膜型氮化鎵發光二極體特性之影響研究zh_TW
dc.titleEffects of Diamond-Like Carbon Multilayers on Characteristics of Thin-Film GaN LEDsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.