Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/12784
標題: 以毛細管膠體電泳分析DNA片段及檢測市售犬罐頭肉品種別之應用
Optimization of capillary gel electrophoresis for DNA fragment analysis and its application to surveillance of meat contents in canine canned food
作者: 施佩吟
Shih, Pei-Yin
關鍵字: capillary gel electrophoresis;毛細管膠體電泳;canine canned food;meat species;犬罐頭;肉品種別
出版社: 獸醫學系暨研究所
引用: Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 422: 198-207, 2003. Allmann M, Candrian U, Höfelein C, Lüthy J. Polymerase chain reaction (PCR): a possible alternative to immunochemical methods assuring safety and quality of food Detection of wheat contamination in non-wheat food products. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 196: 248-251, 1993. Anderson S, Bankier AT, Barrell BG, De Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F. Sequence and organization of the human mitochondrial genome. Nature 290: 457-65, 1981. Aristoy MC, Toldra F. Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Sci 67: 211-217, 2004. Asensio L, González I, García T, Martín R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19: 1-8, 2008. Ayaz Y, Ayaz ND, Erol I. Detection of species in meat and meat products using enzyme‐linked immunosorbent assay. J Muscle Foods 17: 214-220, 2006. Ballin NZ, Vogensen FK, Karlsson AH. Species determination-Can we detect and quantify meat adulteration? Meat Sci 83: 165-174, 2009. Belloque J, Garcia MC, Torre M, et al. Analysis of soyabean proteins in meat products: a review. Crit Rev Food Sci Nutr 42: 507-532, 2002. Bodovitz S, Joos T, Bachmann J. Protein biochips: the calm before the storm. Drug Discov Today 10: 283-287, 2005. Bouley J, Chambon C, Picard B. Mapping of bovine skeletal muscle proteins using two‐dimensional gel electrophoresis and mass spectrometry. Proteomics 4: 1811-1824, 2004. Carnegie PR, Ilic MZ, Etheridge MO, Stuart S. Use of histidine dipeptides and myoglobin to monitor adulteration of cooked beef with meat from other species. Aust Vet J 62: 272-276, 1985. Chen FC, Hsieh YHP. Detection of pork in heat-processed meat products by monoclonal antibody-based ELISA. J AOAC Int 83: 79-85, 2000. Chen HS, Chang HT. Capillary electrophoretic separation of 1 to 10 kbp sized dsDNA using poly (ethylene oxide) solutions in the presence of electroosmotic counterflow. Electrophoresis 19: 3149-3153, 1998. Chen YL, Chang YS, Chang JG, Wu SM. Genotyping of single nucleotide polymorphism in MDM2 genes by universal fluorescence primer PCR and capillary electrophoresis. Anal Bioanal Chem 394: 1291-1297, 2009. Chikuni K, Ozutsumi K, Koishikawa T, Kato S. Species identification of cooked meats by DNA hybridization assay. Meat Sci 27: 119-128, 1990. Chou CC, Lin SP, Lee KM, Hsu CT, Vickroy TW, Zen JM. Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes. J Chromatogr B 846: 230-239, 2007. Chow S, Inoue S. Intra-and interspecific restriction fragment length polymorphism in mitochondrial genes of Thunnus tuna species. Bull Natl Res Inst Far Seas Fish 30: 207-225, 1993. Cutt H, Giles-Corti B, Knuiman M, Burke V. Dog ownership, health and physical activity: a critical review of the literature. Health Place 13: 261-272, 2007. Davey J, Lord M. Gel electrophoresis of proteins. In: Garfin DE, ed. Essential cell biology: a practical approach.Cell structure. 1st edition. Oxford, Great Britain, 197-228, 2003. Doherty MK, McLean L, Hayter JR, Pratt JM, Robertson DHL, El‐Shafei A, Gaskell SJ, Beynon RJ. The proteome of chicken skeletal muscle: changes in soluble protein expression during growth in a layer strain. Proteomics 4: 2082-2093, 2004. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 312: 212-217, 2006. Dooley JJ, Helen D, Clarke MAL, Brown HM, Garrett SD. Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study. J Agric Food Chem 53: 3348-3357, 2005. Dooley JJ, Paine KE, Garrett SD, Brown HM. Detection of meat species using TaqMan real-time PCR assays. Meat Sci 68: 431-438, 2004. Ebbehoj KF, Thomsen PD. Species differentiation of heated meat products by DNA hybridization. Meat Sci 30: 221-234, 1991. Etienne M, Jerome M, Fleurence J, Rehbein H, Kündiger R, Mendes R, Costa H, Pérez-Martín R, Pineiro-Gonzalez C, Craig A. Identification of fish species after cooking by SDS-PAGE and urea IEF: a collaborative study. J Agric Food Chem 48: 2653-2658, 2000. Fajardo V, Gonzalez I, López-Calleja I, Martín I, Rojas M, Hernández PE, García T, Martin R. Identification of meats from red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) using polymerase chain reaction targeting specific sequences from the mitochondrial 12S rRNA gene. Meat Sci 76: 234-240, 2007. Fajardo V, González I, Martín I, Rojas M, Hernández PE, García T, Martín R. Real-time PCR for detection and quantification of red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) in meat mixtures. Meat Sci 79: 289-298, 2008. Faller T, Engelhardt H. How to achieve higher repeatability and reproducibility in capillary electrophoresis. J Chromatogr A 853: 83-94, 1999. Feng YL, Lian H, Zhu J. Application of pressure assisted electrokinetic injection technique in the measurements of DNA oligonucleotides and their adducts using capillary electrophoresis-mass spectrometry. J Chromatogr A 1148: 244-249, 2007. Feng YL, Zhu J. On-line enhancement technique for the analysis of nucleotides using capillary zone electrophoresis/mass spectrometry. Anal Chem 78: 6608-6613, 2006. Fiocchi A, Restani P, Riva E, Qualizza R, Bruni P, Restelli AR, Galli CL. Meat allergy: I--Specific IgE to BSA and OSA in atopic, beef sensitive children. J Am Coll Nutr 14: 239-244, 1995. Fiocchi A, Restani P, Riva E. Beef allergy in children. Nutrition 16: 454-457, 2000. Flores‐Munguia ME, Bermudez‐Almada MC, Vázquez‐Moreno L. A research note: detection of adulteration in processed traditional meat products. J Muscle Foods 11: 319-325, 2000. Foran DR. Relative Degradation of nuclear and mitochondrial DNA: An experimental approach. J Forensic Sci 51: 766-770, 2006. Fumière O, Veys P, Boix A, von Holst C, Baeten V., Berben G. Methods of detection, species identification and quantification of processed animal proteins in feedingstuffs. Biotechnol Agron Soc Environ 13: 59-70, 2009. Gallardo JM, Sotelo CG, Pineiro C, Perez-Martin, R.I. Use of capillary zone electrophoresis for fish species identification. Differentiation of flatfish species. J Agric Food Chem 43: 1238-1244, 1995. Garcia LL, Shihabi ZK. Sample matrix effects in capillary electrophoresis: I. Basic considerations. J Chromatogr A 652: 465-469, 1993. Girish PS, Anjaneyulu ASR, Viswas KN, Anand M. Rajkumar N. Shivakumar BM., Bhaskar S. Sequence analysis of mitochondrial 12S rRNA gene can identify meat species. Meat Sci 66: 551-556, 2004. Görg A, Drews O, Lück C, Weiland F, Weiss W. 2‐DE with IPGs. Electrophoresis 30: 122-132, 2009. Hashimoto Y, Yasui T. Researches on the detection of meat by serological test. J Faculty Agric Hokkaido University 50: 171-196, 1957. Heller C. Principles of DNA separation with capillary electrophoresis. Electrophoresis 22: 629-643, 2001. Hofmann K. Principal problems in the identification of meat species of slaughter animals using electrophoretic methods. In: Patterson RLS, ed. Biochemical identification of meat species. 1st edition. Elsevier, London, 9-31, 1985. Honda S, Iwase S, Fujiwara S. Evaluation of an automtic siphonic sampler for capillary zone electrophoresis. J Chromatogr A 404: 313-320, 1987. Hsieh YHP, Woodward BB, Ho SH. Detection of species substitution in raw and cooked meats using immunoassays. J Food Prot 58: 555-559, 1995. Ke F, Mo X, Yang R, Wang Y, Liang D. Polymer mixtures with enhanced compatibility and extremely low viscosity used as DNA separation media. Electrophoresis 31: 520-527, 2010. Kraly J, Fazal MA, Schoenherr RM, Bonn R, Harwood MM, Turner E, Jones M. Dovichi NJ. Bioanalytical applications of capillary electrophoresis. Anal Chem 78: 4097-4110, 2006. Kunkel A, Degenhardt M, Schirm B, Watzig H. Performance of instruments and aspects of methodology and validation in quantitative capillary electrophoresis an update* 1. J Chromatogr A 768: 17-27, 1997. Kvasnička F. Capillary electrophoresis in food authenticity. J Sep Sci 28: 813-825, 2005. Lametsch R, Roepstorff P, Bendixen E. Identification of protein degradation during post-mortem storage of pig meat. J Agric Food Chem 50: 5508-5512, 2002. Larrain MA, Abugoch L, Quitral V, Vinagre J, Segovia C. Capillary zone electrophoresis as a method for identification of golden kinglip (Genypterus blacodes) species during frozen storage. Food Chem 76: 377-384, 2002. Lin YW, Chiu TC, Chang HT. Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis. J Chromatogr B 793: 37-48, 2003. Liu L, Chen FC, Dorsey JL, Hsieh YHP. Sensitive monoclonal antibody‐based sandwich ELISA for the detection of porcine skeletal muscle in meat and feed products. J Food Sci 71: 1-6, 2006. Lockley AK, Bardsley RG. DNA-based methods for food authentication. Trends Food Sci Technol 11: 67-77, 2000. Macedo-Silva A, Shimokomaki M, Vaz AJ, Yamamoto YY, Tenuta-Filho A. Textured soy protein quantification in commercial hamburger. J Food Compos Anal 14: 469-478, 2001. Maede D. A strategy for molecular species detection in meat and meat products by PCR-RFLP and DNA sequencing using mitochondrial and chromosomal genetic sequences. Eur Food Res Technology 224: 209-217, 2006. Martin DR, Chan J, Chiu JY. Quantitative evaluation of pork adulteration in raw ground beef by radial immunodiffusion and enzyme-linked immunosorbent assay. J Food Prot 61: 1686-1690, 1998. Martin R, Wardale RJ, Jones SJ, Hernandez PE, Patterson RLS. Monoclonal antibody sandwich ELISA for the potential detection of chicken meat in mixtures of raw beef and pork. Meat Sci 30: 23-31, 1991. Martin R, Wardale RJ, Jones SJ, Hernandez PE, Patterson RLS. Production and characterization of monoclonal antibodies specific to chicken muscle soluble proteins. Meat Sci 25: 199-207, 1989. Martinez I, Malmheden Yman I. Species identification in meat products by RAPD analysis. Food Res Int 31: 459-466, 1998. Matsunaga T, Chikuni K, Tanabe R, Muroya S. Shibata K. Yamada J, Shinmura Y. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci 51: 143-148, 1999. Meyer R, Höfelein C, Lüthy J, Candrian U. Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J AOAC Int 78: 1542-1551, 1995. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150: 1283-1298, 2000. Montowska M, Pospiech E. Authenticity determination of meat and meat products on the protein and DNA basis. Food Rev Int 27: 84-100, 2011 Mullen AM, Stapleton PC, Corcoran D, Hamill RM, White A. Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci 74: 3-16, 2006. Murray SR, Butler RC, Hardacre AK, Timmerman-Vaughan GM. Use of quantitative real-time PCR to estimate maize endogenous DNA degradation after cooking and extrusion or in food products. J Agric Food Chem 55: 2231-2239, 2007. O''Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007-4021, 1975. Partis L, Croan D, Guo Z, Clark R, Coldham T, Murby J. Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci 54: 369-376, 2000. Pascoal A, Prado M, Castro J, Cepeda A, Barros-Velázquez J. Survey of authenticity of meat species in food products subjected to different technological processes, by means of PCR-RFLP analysis. Eur Food Res Technol 218: 306-312, 2004. Ponce-Alquicira E, Taylor AJ. Extraction and ESI-CID-MS/MS analysis of myoglobins from different meat species. Food Chem 69: 81-86, 2000. Prado M, Calo P, Cepeda A, Barros‐Velázquez J. Genetic evidence of an Asian background in heteroplasmic Iberian cattle (Bos taurus): Effect on food authentication studies based on polymerase chain reaction‐restriction fragment length polymorphism analysis. Electrophoresis 26: 2918-2926, 2005. Prusiner SB. Prion diseases and the BSE crisis. Science 278: 245-251, 1997. Recio I, Ramos M, López‐Fandiño R. Capillary electrophoresis for the analysis of food proteins of animal origin. Electrophoresis 22: 1489-1502, 2001. Rehbein H, Mackie IM, Pryde S, Gonzales-Sotelo C. Medina I. Perez-Martin R. Quinteiro J, Rey-Mendez M. Fish species identification in canned tuna by PCR-SSCP: validation by a collaborative study and investigation of intra-species variability of the DNA-patterns. Food Chem 64: 263-268, 1999. Rodríguez-Ramírez R, González-Córdova AF, Vallejo-Cordoba B. Authentication and traceability of foods from animal origin by PCR-based capillary electrophoresis. Anal Chim Acta 685: 120-126, 2010. Rohman A, Sismindari , Erwanto Y, Che Man YB. Analysis of pork adulteration in beef meatball using fourier transform infrared (FTIR) spectroscopy. Meat Sci 88: 91-95, 2010. Rose Jr DJ, Jorgenson JW. Characterization and automation of sample introduction methods for capillary zone electrophoresis. Anal Chem 60: 642-648, 1988. Rosenblum BB, Oaks F, Menchen S, Johnson B. Improved single-strand DNA sizing accuracy in capillary electrophoresis. Nucleic Acids Res 25: 3925, 1997. Sampson HA. Food allergy-accurately identifying clinical reactivity. Allergy 60: 19-24, 2005. Sang F, Ren J. Capillary electrophoresis of double‐stranded DNA fragments using a new fluorescence intercalating dye EvaGreen. J Sep Sci 29: 1275-1280, 2006. Schaeper JP, Sepaniak MJ. Parameters affecting reproducibility in capillary electrophoresis. Electrophoresis 21: 1421-1429, 2000. Schwartz H, Guttman A. Separation of DNA by Capillary Electrophoresis. In: Schwartz H, Guttman A, ed. CE method: principle and strategies. Beckman, California, 33-35, 1995. Sentandreu MA, Fraser PD, Halket J, Patel R, Bramley PM. A proteomic-based approach for detection of chicken in meat mixes. J Proteome Res 9: 3374-3383, 2010. Shihabi ZK, Hinsdale ME. Some variables affecting reproducibility in capillary electrophoresis. Electrophoresis 16: 2159-2163, 1995. Sicherer SH, Sampson HA. 9. Food allergy. J Allergy Clin Immunol 117: 470-475, 2006. Skarpeid HJ, Kvaal K, Hildrum KI. Identification of animal species in ground meat mixtures by multivariate analysis of isoelectric focusing protein profiles. Electrophoresis 19: 3103-3109, 1998. Slattery WJ, Sinclair AJ. Differentiation of meat according to species by the electrophoretic separation of muscle lactate dehydrogenase and esterase isoenzymes and isoelectric focusing of soluble muscle proteins. Aust Vet J 60: 47-51, 1983. Soares S, Amaral JS, Mafra I, Oliveira M. Quantitative detection of poultry meat adulteration with pork by a duplex PCR assay. Meat Sci 85: 531-536, 2010. Song L, Ou Q, Yu W, Xu G. Effect of high concentrations of salts in samples on capillary electrophoresis of anions. J Chromatogr A 696: 307-319, 1995. Sri Kantha S, Takeuchi M, Watabe S, Ochi H. HPLC determination of carnosine in commercial canned soups and natural meat extracts. Lebensmittel-Wissenschaft und-Technologie 33: 60-62, 2000. Sultan KR, Tersteeg MHG, Koolmees PA, de Baaij JA, Bergwerff AA, Haagsman HP. Western blot detection of brain material in heated meat products using myelin basic protein and neuron-specific enolase as biomarkers. Anal Chim Acta 520: 183-192, 2004. Sun YL, Lin CS. Establishment and application of a fluorescent polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identifying porcine, caprine, and bovine meats. J Agric Food Chem 51: 1771-1776, 2003. Tranchida PQ, Dugo P, Dugo G, Mondello L. Comprehensive two-dimensional chromatography in food analysis. J Chromatogr A 1054: 3-16, 2004. Vallejo‐Cordoba B, González‐Córdova AF, Mazorra‐Manzano MA, Rodríguez‐Ramírez R. Caillary electrophoresis for the analysis of meat authenticity. J Sep Sci 28: 826-836, 2005. Vallejo‐Cordoba B, González‐Córdova AF. Capillary electrophoresis for the analysis of contaminants in emerging food safety issues and food traceability. Electrophoresis 31: 2154-2164, 2010. Verlinden A, Hesta M, Millet S, Janssens GPJ. Food allergy in dogs and cats: a review. Crit Rev Food Sci Nutr 46: 259-273, 2006. Villareal V, Zhang Y, Zurita C, Moran J, Silva I, Gomez FA. Separation of DNA by capillary electrophoresis in uncoated silica columns using hydroxypropylmethyl cellulose as the sieving matrix. Anal Lett 36: 451-463, 2003. Wang CC, Chang JG, Ferrance J, Chen HY, You CY, Chang YF, Jong YJ, Wu SM, Yeh CH. Quantification of SMN1 and SMN2 genes by capillary electrophoresis for diagnosis of spinal muscular atrophy. Electrophoresis 29: 2904-2911, 2008. Wang HC, Lee SH, Chang TJ, Wong ML. Public health-examination of meat components in commercial dog and cat feed by using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) Technique. J Vet Med Sci 66: 855-860, 2004. Wang Q, Xu X. DNA separation by capillary electrophoresis with ultraviolet detection using mixed synthetic polymers. Chinese Chem Lett 14: 1278-1280, 2003. Wissiack R, de la Calle B, Bordin G, Rodriguez AR. Screening test to detect meat adulteration through the determination of hemoglobin by cation exchange chromatography with diode array detection. Meat Sci 64: 427-432, 2003. Zeng YH, Zhang D, Shu Y, Sun L, Wei Z, Zhou B, Tang JP. Detection of serum specific IgE in 437 children with allergic disease. Zhongguo dang dai er ke za zhi 11: 543-545, 2009.
摘要: 
隨著民眾逐漸重視動物用食品之安全及品質,動物用食品中之成分檢測就顯得格外重要,其中肉品成分之誠實標示對於健康、宗教及商業公平性皆具顯著意義。然而此一動物用食品安全領域卻少見重視及研究。此外,各種分析方法之適用性也需要檢視。本研究針對蛋白質與DNA兩大類分子,選用酵素免疫分析(enzyme-linked immunosorbent assay,ELISA)與聚合酶鏈鎖反應合併限制片段多形性(polymerase chain reaction-restriction fragment length polymorphism,PCR-RFLP)方法,分析市售犬用罐頭之肉品標示種別。為增進PCR-RFLP分析圖譜的解析度與偵測極限,本研究除以平板電泳(slab gel electrophoresis,SGE)搭配紫外光(ultraviolet,UV)偵測PCR-RFLP產物外,更以毛細管膠體電泳(capillary gel electrophoresis,CGE)搭配雷射激發螢光(laser-induced fluorescence,LIF)進一步偵測。由於CGE對於不同大小的DNA片段有其合適的分析條件,故本實驗亦對肉品DNA切割後之產物(100 ~ 400 bp)進行方法之最佳化。PCR-RFLP結果顯示牛與豬肉之DNA經AluI與MboI切割之後片段大小具有良好的種別特異性;而羊肉與禽肉之片段則因與部分物種相似故以ELISA方法區別度較佳。此外,部分以SGE檢測不出牛或豬肉成分者,可以CGE測得該成分波峰,顯示CGE-LIF比SGE-UV具有更低的偵測極限及敏感度。本研究發現11個不同品牌的罐頭多數可測出未標示之豬或羊肉成分,而部分則測不出所標示之雞肉成分,顯示標籤之正確性仍有改善空間。研究結果同時顯示各分析方法所產生的結果並不完全一致,代表單一方法的準確性亦有進一步討論的必要。本實驗額外以PCR-RFLP搭配SGE-UV檢測市售潔牙骨是否含有肉品來源,在6個不同品牌標示不含肉品成分之潔牙骨產品中,有1個產品可檢出肉品反應。簡言之,藉由這些樣品檢測,研究發現多數犬用食品之肉品成分並未完全符合其標籤內容,建議廠商在產品標示上應做出更精確的肉品成分與添加比例說明。合併多重分析方法,可以使檢測的準確度提高,因此,現行以單一方法檢測的方式值得進一步檢討。未來,若能擴大更多品牌、產地及生產批號之樣品檢驗,以增進採樣的統計意義,將能更進一步了解伴侶動物食品之肉品標示的正確性。

With the increasing awareness of animal food safety and quality, species identification of meat content in animal food products has gaining importance for health, economic and legal reasons. To obtain reliable and accurate information regarding meat contents in canine canned food, several analytical techniques have been developed for the identification of meat species in mixed samples, including protein-based and DNA-based methods. We used both enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods for the initial screening of canine canned food, and coupled with slab gel electrophoresis (SGE), and capillary gel electrophoresis (CGE) with laser-induced fluorescence (LIF) detector for confirmation of PCR-RFLP products. CGE method for the analysis of PCR-RFLP products sized between 100 to 400 bp was optimized. The results suggested that while the specificity for beef and pork was better using PCR-RFLP, ELISA was better for differientiation of sheep/goat and avian species. CGE was shown to have improved resolution and sensitivity than SGE revealing more meat species in the same sample. The results of canned food surveillance indicated that none of the 11 tested canned food meat species totally matched the label. On the other hand, one out of six canine vegan bone treats was found with meat content. In conclusion, it is better to use multiple analytical methods to improve assay spectrum although there is a significant discrepancy between the labeled canned food meat species and the tested results. Manufactures are advised to be more accurate in stating their products labels. Sample numbers should be increased for better biostatistic interpretation and accurate surveillance of meat contents in companion animals.
URI: http://hdl.handle.net/11455/12784
其他識別: U0005-0308201116303000
Appears in Collections:獸醫學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.