Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/12836
標題: | 不同程度之甲狀腺素在大鼠利用硫代乙醯胺誘導之肝纖維化的影響 The effect of different thyroxin level on rats with liver fibrosis induced by thioacetamide |
作者: | 李銘偉 Lee, Ming-Wei |
關鍵字: | Liver fibrosis;肝纖維化;Thioacetamide;Thyroxin;Matrix metalloproteinase;乙醯硫代胺;甲狀腺素;基質金屬蛋白酵素 | 出版社: | 獸醫學系暨研究所 | 引用: | Adam AC, Astapova I, Fisher FM. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARα-dependent manner. J Biol Chem. 285(19):14078-14082, 2010 Antoine M, Wirz W, Tag CG, Gressner AM, Marvituna M, Wycislo M, Hellerbrand C, Kiefer P. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury. Biochem Biophys Res Commun. 361(2):335-341, 2007. Arthur MJ. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C Gastroenterology. 122:1525-1528, 2002. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 115(2):209-218, 2005. Bruck R, Frenkel D, Shirin H, Aeed H, Matas Z, Papa M, Zaidel L, Avni Y, Oren R, Halpern Z. Hypothyroidism protects rat liver from acetaminophen hepatotoxicity. Dig Dis Sci. 44:1228-1235, 1999. Bruck R, Oren R, Shirin H, Aeed H, Papa M, Matas Z, Zaidel L, Avni Y, Halpern Z. Hypothyroidism minimizes liver damage and improves survival in rats with thioacetamide induced fulminant hepatic failure. Hepatology. 27(4):1013-1020, 1998. Bruck R, Weiss S, Traister A, Zvibel I, Aeed H, Halpern Z, Oren R. Induced hypothyroidism accelerates the regression of liver fibrosis in rats. J Gastroenterol Hepatol. 22(12):2189-2194, 2007. Cao Q, Mak KM, Lieber CS. Dilinoleoylphosphatidylcholine prevents transforming growth factor-beta1-mediated collagen accumulation in cultured rat hepatic stellate cells. J Lab Clin Med. 139:202-210, 2002. Chang CC, Chen YC, Huang HC, Lee FY, Chang FY, Lin HC, Chan CY, Wang SS, Lee SD. Methimazole alleviates hepatic encephalopathy in bile duct ligated cirrhotic rats. J chin Med Assoc. 69:563-568, 2006. Chen DS. Hepatocellular carcinoma. Hepatol Res. 37(Suppl 2):S101-5, 2007. Cheng K, Yang N, Mahato RI. TGF-β1 gene silencing for treating liver fibrosis. Mol Pharm. 6(3):772-779, 2009. Chilakapati J, Shankar K, Korrapati MC, Hill RA, Mehendale HM. Saturation toxicokinetics of thioacetamide: role in initation of liver injury. Drug Metab Dispos. 33(12):1877-1885, 2005. Consolo M, Amoroso A, Spandidos DA, Mazzarino MC. Matrix metalloproteinases and their inhibitor as markers of inflammation and fibrosis in chronic liver disease (Review). Int J Mol Med. 24(2):143-152, 2009. Cowan ML, Rahman TM, Krishna S. Proteomic approaches in the search for biomarkers of liver fibrosis. Trends Mol Med. 16(4):171-183, 2010. Forns X. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 36:986-992, 2002. Ge G, Greenspan DS. BMP1 controls TGFbeta1 activation via cleavage of latent TGF beta-binding protein. J Cell Biol. 175:111-120, 2006. Gieling RG, Wallace K, Han YP. Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol. 296:G1324-G1331, 2009. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets. J Cell Mol Med. 10:76-99, 2005. Gressner AM. Weiskirchen R, Breitopf K, Dooley S. Role of TGF-beta in hepatic fibrosis. Front. Biosci. 7:d793-d807, 2002. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 278(1):28-45, 2011. Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti- fibrotic strategies. J hepatol. 46: 955-975, 2007. Hirata M, Akbar SM, Horiike N, Onji M. Noninvasive diagnosis of the degree of hepatic fibrosis using ultrasonography in patients with chronic liver disease due to hepatitis C virus. Eur J Clin Invest. 31:528-535, 2001. Hsiao YH. The relationship between hypothyroidism and liver fibrosis in rats. Master thesis, NCHU, DVM. Taiwan. June, 2010. Hui AY, Friedman SL. Molecular basis of hepatic fibrosis. Expert Rev Mol Med. 5(5):1-23, 2003. Inagaki Y, Okazaki. Emerging insights into transforming growth factor β smad signal in hepatic fibrogenesis. Gut. 56(2):284-292, 2007. Iredale JP. Hepatic stellate cell behaviour during resolution of liver fibrosis. Semin Liver Dis. 21:427-436, 2001. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, Desmet V, Korb G, MacSween RN, et al. Histological grading and staging of chonic hepatitis. J hepatol. 22:696-699, 1995. Jarcuska P, Janicko M, Veselíny E, Jarcuska P, Skladaný L. Circulating markers of liver fibrosis progression. Clinica Chimica Acta. 411:1009-1017, 2010. Jin-no K, Tanimizu M, Hyodo I, Kurimoto F, Yamashita T. Plasma level of basic fibroblast growth factor increases with progression of chronic liver disease. J Gastroenterol. 32(1):119-121, 1997. Kariv R, Enden A, Zvibel I, Rosner G, Brill S, Shafritz DA, Halpern Z, Oren R. Triiodothyronine and interleukin-6 (IL-6) induce expression of HGF in an immortalized rat hepatic stellate cell line. Liver Int. 23(3):187-193, 2003. Lichtinghagen R, Michels D, Haberkorn CI, Arndt B, Bahr M, Flemming P, Manns MP, Boeker KH. Matrix metalloproteinase (MMP)-2, MMP-7, and tissue inhibitor of metalloproteinase-1 are closely related to the fibroproliferative process in the liver during chronic hepatitis C. J Hepatol. 34:239-247, 2001. López-Fontal R, Zeini M, Través PG, Gómez-Ferrería M, Aranda A, Sáez GT, Cerdá C, Martín-Sanz P, Hortelano S, Boscá L. Mice lacking thyroid hormone receptor Beta show enhanced apoptosis and delayed liver commitment for proliferation after partial hepatectomy. PLoS One. 5(1):e8710, 2010. Malik R, Hodgson H. The relationship between the thyroid gland and the liver. Q J Med. 95:559-569, 2002. Marra F. Hepatic stellete cells and the regulation of liver inflammation. J hepatol. 31; 1120-1130, 1999. Okazaki I, Watanabe T, Hozawa S, Niioka M, Arai M, Maruyama K. Reversibility of hepatic fibrosis: from the first report of collagenase in the liver to the possibility of gene therapy for recovery. Keio J Med. 50(2):58-65, 2001. Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, Suzuki Y, Kojima S. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-β. Gastroenterology. 120:1784-1800, 2001. Onozuka I, Kakinuma S, Kamiya A, Miyoshi M, Sakamoto N, Kiyohashi K, Watanabe T, Funaoka Y, Ueyama M, Nakagawa M, Koshikawa N, Seiki M, Nakauchi H, Watanabe M. Cholestatic liver fibrosis and toxin-induced fibrosis are exacerbated in matrix metalloproteinase-2 deficient mice. Biochem Biophys Res Commun. 406(1):134-140, 2011. Oren R, Brill S, Dotan I, Halpern Z. Liver function in cirrhotic patients in the euthyroid versus the hypothyroid state. J Clin Gastroenterol. 27(4):339-341, 1998. Oren R, Dotan I, Papa M, Marravi Y, Aeed H, Barg J, Zeidel L, Bruck R, Halpern Z. Inhibition of experimentally induced cirrhosis in rats by hypothyroidism. Hepatology. 24(2):419-423, 1996. Oren R, Sikuler E, Wong F, Blendis LM, Halpern Z. The effects of hypothyroidism on liver status of cirrhotic patients. J Clin Gastroenterol. 31(2):162-163, 2000. Orrego H, Blake JE, Blendis LM, Compton KV, Israel Y. Long-term treatment of alcoholic liver disease with propylthiouracil. N Engl J med. 317:1421-1427, 1987. Ramaiah SK, Apte U, Mehendale HM. Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. Drug Metab Dispos. 29(8):1008-1095, 2001. Ramaiah SK, Apte UM, Mehendale HM. Diet restriction as a protective mechanism in noncancer toxicity outcomes. A review Int J Toxicol. 19:413-429, 2000. Reuben PM, Cheung HS. Regulation of matrix metalloproteinase (MMP) gene expression by protein kinases. Front Biosci. 11:1199-1215, 2006. Rosenbaum J, Blazejewski S, Préaux AM, Mallat A, Dhumeaux D, Mavier P. Fibroblast growth factor 2 and transforming growth factor beta 1 interactions in human liver myofibroblasts. Gastroenterology. 109(6):1986-1996, 1995. Roy CK, Asad M, Das AK, Pillai D. Comparative study of the hepatoprotective efficacy of a few marketed polyherbal products. Pharmacologyonline. 1:629-647, 2009. Singh AK, Pancholi N, Patel J, Litbarg NO, Gudehithlu KP, Sethupathi P, Kraus M, Dunea G, Arruda JA. Omentum facilitates liver regeneration. World J Gastroenterol. 15(9):1057-1064, 2009. Sotgia F, Williams TM, Schubert W, Medina F, Minetti C, Pestell RG, Lisanti MP. Caveolin-1 deficiency (-/-) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. Am J Pathol. 168:292-309, 2006. Taiwan Cancer Registry. http://crs.cph.ntu.edu.tw/crs_c/annual.html. Accessed February 2009 Taki-Eldin A, Zhou L, Xie HY, Chen KJ, Zhou WH, Zhang W, Xing CY, Yang Z, Zhang K, Zheng SS. Tri-iodothyronine enhances liver regeneration after living donor liver transplantation in rats. J Hepatobiliary Pancreat Sci. May, 2011. Tuñón MJ, Alvarez M, Culebras JM, González-Gallego J. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol. 15(25):3086-3098, 2009. Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 5(4):200-206. 2009. Vu TH and Werb Z. Gelationase B: structure, regulation and function. In: William CP, Mechan RP eds. Matrix metalloproteinases. Academic press, San Diego, California, USA, 115-148, 1998. Wakefield LM, Piek E, Bottinger EP. TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia. 6(1):67-82, 2001. Wells RG. Mechanisms of liver fibrosis: new insights in to an old problem. Drug Discov Today Dis Mech. 3(4):489-495, 2007. Woessner JF. The matrix metalloproteinase family. In: William CP, Mechan RP eds. Matrix metalloproteinases. Academic press, San Diego, California, USA, 1-13, 1998. Xu X, Chen Z, Wang Y, Yamada Y, Steffensen B.Functional basis for the overlap in ligand interactions and substrate specificities of matrix metalloproteinases-9 and -2. Biochem J. 392:127-134, 2005. Yen CC, Huang YH, Liao CY, Liao CJ, Cheng WL, Chen WJ, Lin KH. Mediation of the inhibitory effect of thyroid hormone on proliferation of hepatoma cells by transforming growth factor-beta. J Mol Endocrinol. 36(1):9-21, 2006. Yu AE, Murphy AN, Stetler-Stevenson WG. 72-kDa gelatinase (gelatinase A): structure, activation, regulation, and substrate specificity. In: William CP, Mechan RP eds. Matrix metalloproteinases. Academic press, San Diego, California, USA, 85-113, 1998. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14:163-176, 2000. Ziegelhöffer-Mihalovicová B, Briest W, Baba HA, Rassler B, Zimmer HG. The expression of mRNA of cytokines and extracellular matrix proteins in triiodothyonine-treated rat hearts. Mol Cell Biochem. 247(1-2):61-68, 2003. Zvibel I, Atias D, Phillips A, Halpern Z, Oren R. Thyroid hormones induce activation of rat hepatic stellate cells through increased expression of p75 neutrophin receptor and direct activation of Rho. Lab Invest. 90(5):674-684, 2010. | 摘要: | 肝纖維化是由於不同病因造成連續性的肝臟傷害所導致。在肝纖維化的形成中,活化的肝臟星狀細胞轉變成肌纖維母細胞,並且在過成中增加膠原的合成與分解的減少。許多研究指出甲狀腺功能低下症可以減少大鼠肝臟的損傷及纖維化,但其機制仍不清楚。因此本研究擬探討在不同甲狀腺素下對於硫代乙醯胺導致之肝纖維化的影響,並更進一步找到個別所扮演的機制。首先,大鼠利用硫代乙醯胺腹腔注射12週誘導為肝纖維化。之後分成三個組別研究,包括控制組、甲狀腺功能低下組及甲狀腺功能亢進組。甲狀腺功能低下大鼠使用局部甲狀腺摘除術。甲狀腺功能亢進大鼠則給予8週飲水添加甲狀腺素。組織病理學中,肝纖維化分數在甲狀腺功能低下組顯著較低 (1.62 ± 0.62),而甲狀腺功能亢進組顯著較高 (2.6 ± 1.2)。肝體重比值甲狀腺功能亢進組 (4.38 ± 0.29) 顯著高於控制組 (4.08 ± 0.35) 與低下組 (3.86 ± 0.39)。肝組織中基質金屬蛋白酵素-2活化態顯著高於基質金屬蛋白酵素-2及-9的非活化態。同時間,肝組織基質金屬蛋白酵素-2活性在甲狀腺功能低下組 (49.18 ± 18.12) 顯著高於控制組 (18.73 ± 9.68)。肝組織基質金屬蛋白抑制物-1濃度在甲狀腺功能低下組 (3991.1 ± 1017.67) 與控制組 (2624.6 ± 812.64) 呈現顯著差異。肝臟轉型生長因子-β1濃度在甲狀腺功能低下組 (418.66 ± 102.46) 與亢進組 (251.43 ± 115.41) 及控制組 (212.28 ± 72.91) 間呈現顯著差異。而且,血清中基質金屬蛋白酵素-2活化態活性高於其他型態的基質金屬蛋白酵素,而在甲狀腺功能低下組顯著較高。結論,低濃度之甲狀腺荷爾蒙可透過間接提高基質金屬蛋白酵素的活性而幫助肝臟纖維化的回復,然而在高濃度的甲狀腺素則纖維化回復效果不明顯。 Liver fibrosis is the result of continuous liver injury stemming from different etiological factors. In the formation of liver fibrosis, the activated hepatic stellate cell (HSC) turn into myofibroblast cell, and this process increases synthesis of collagen and decreases degradation. Some studies shows hypothyroidism could minimize liver damage and fibrosis in rats, but the mechanism still unclear. Therefore, the potential effect of thyroxin on fibrotic liver was investigated. Three groups including control, hypothyroid and hyperthyroid were studied. All rats were induced liver fibrosis by thioacetamide for 12 weeks. Hypothyroid rats were induced by partially thyroidectomy. Hyperthyroid rats were treated by eltroxin added in drinking water for 8 weeks. Under histopathology, liver fibrosis score showed significantly less in hypothyroid group (1.62 ± 0.62) and significantly higher in hyperthyroid group (2.6 ± 1.2). The ratio of liver weight/body weight in hyperthyroid group (4.38 ± 0.29) was significantly higher than both of control (4.08 ± 0.35) and hypothyroid groups (3.86 ± 0.39). The activity of liver matrix metalloproteinase (MMP)-2 active form showed significantly higher than activity of MMP-2 and -9 latent forms among three groups. Meanwhile, the activity of liver MMP-2 active form showed significantly higher in hypothyroid group (49.18 ± 18.12) compared to control group (18.73 ± 9.68). Liver tissue inhibitor of MMPs (TIMP)-1 concentration showed significant difference in hypothyroid group (3991.1 ± 1017.67) compared with control group (2624.6 ± 812.64). Liver transforming growth factor (TGF)-β1 concentration showed significant difference in hypothyroid group (418.66 ± 102.46) compared with hyperthyroid group (251.43 ± 115.41) and control (212.28 ± 72.91). Likewise, the serum MMP-2 active form showed higher activity level than other MMPs, and it showed significantly higher in hypothyroid group compared with other groups most of times. In conclusions, the low level of thyroid hormone could help the regression of liver fibrosis by indirectly promoted the activity of MMPs, whereas indistinctively regression of liver fibrosis with high level of thyroid hormone. |
URI: | http://hdl.handle.net/11455/12836 | 其他識別: | U0005-0707201115170200 |
Appears in Collections: | 獸醫學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.