Please use this identifier to cite or link to this item:
標題: 偵測犬惡性腫瘤中黑色素細胞抗原-A(MAGE-A)轉錄物與蛋白質的表現
Detection of MAGE-A transcripts and proteins in canine malignant tumors
作者: 陳昭燕
Chen, Chao-Yen
出版社: 獸醫學系暨研究所
引用: Amar-costesec A, Godelaine D, Stockert E, Van der Bruggen P, Beaufay H, Chen YT. The tumor protein MAGE-1 is located in the cytosol of human melanoma cells. Biochem biophys Res Comm 204, 710-715, 1994. Arenberger P, Arenbergerova M, Gkalpakiotis S, Lippert J, Stribrna J, Kremen J. Multimarker real-time reverse transcription-PCR for quantitative detection of melanoma-associated antigens: a novel possible staging method. J Eur Acad Eermatol Venereol 22:56-64, 2008. Atanackovic D, Altorki NK, Cao Y. Booster vaccination of cancer patients with MAGE-A3 protein reveals long-term immunological memory or tolerance depending on priming. Proc Natl Acad Sci USA 105:1650-1655, 2008. Brasseur F, Rimoldi D, Lienard D. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer 63:375-380, 1995. Brichard VG & Lejeune D. GSK's antigen-specific cancer immunotherapy programme: Pilot results leading to Phase III clinical development. Vaccine 255:B61-41, 2007. Caballero OL, Chen YT. Cancer/testis (CT) antigens: Potential targets for immunotherapy. Cancer Sci. 32:4340-4350,2009. Cassidy SB. Prader-Willi syndrome. J Med Genet 34:917-923, 1997. Chen YC. Expression of melanoma antigen-A in canine normal and mesenchymal neoplastic tissues. Master degree thesis, National Chung-Hsin University Taichung Taiwan, 2010. Chomez P. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res 61:5544-5551, 2001. Cuffel C, Rivals JP, Zaugg Y, Salvi S, Seelentag W, Speiser DE, Lienard D, Monnier P, Romero P, Bron L, Rimoldi D. Pattern and clinical significance of cancer-testis gene expression in head and neck squamous cell carcinoma. Int J Cancer 128:2625-2634, 2010. De Plaen, Arden K, Traversari C, Gaforio JJ, Szikora JP, De Smet C, Brasseur F, van der Bruggen P, Lethe B, Lurquin C, Brasseur R, Chomez P, De Backer O, Cavenee W, Boon T. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40:360-369, 1994. Doyle JM, Gao J, Wang J, Yang M, Potts PR. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell 24;39:963-74, 2010. Eura M, Ogi K, Chikamatus K Lee KD, Nakano K, Masuyama K, Itoh K, Ishikawa T. Expression of the MAGE gene family in human head-and-neck squamous-cell carcinomas. Int J Cancer 64:304-308, 1995. Gaugler B. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179:921-930, 1994. Grone A, Weckmann MT, Capen CC, Rosol TJ. Canine glyceraldehydes-3-phosphate dehydrogenase complementary DNA: polymerase chain reaction amplification, cloning, partial sequence analysis, and use as loading control in ribonuclease protection assays. Am J Vet Res 57:254-257, 1996. Gure AO, Chua R, Willianmson B, Gonen M, Ferrera CA, Gnjatic S, Ritter G, Simpson AJG, Chen YT, Old LJ, Altorki NK. Cancer-testis genes are coordinatedly expressed and are marker of poor outcome in non-small lung cancer. Clin Cancer Res 11:8055-8062, 2005. Hayashiya SE, Colditz GA, Willett WC. Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res 6:213-218, 2002. Head LL, Francis DA. Mineralized paraprostatic cyst as a potential contributing factor in the development of perineal hernias in a dog. J Am Vet Med Assoc 221-533, 2002. Itoh K, Hayashi A, Masanobu N, Hoshino T, Seki N, Shichijo S. Human tumor rejection antigens MAGE. J Biochem 119:385-390,1996. Jager E, Karbach J, Gnjatic S. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci USA 103:14453-144538, 2006. Kim KH, Choi JS, Kim IJ, Ku JL, Park JG. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 gene in colorectal cancer cell lines and cancer tissues. World J Gastroenterol 12:5651-5657, 2006. Klein CA. Cancer; The metastasis cascade. Science 321:1785-1787, 2008. Knuth A, Wolfel T, Klehmann E, Boon T, Meyer zum Buschenfelde KH. Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc NAtl Acad Sci U S A 86:2804-2808, 1989. Krauss E, Rauthe S, Gattenlohner S, Reuther T, Kochel M, Kriegebaum U, Kubler AC, Muller-Richter UD. MAGE-A antigens in lesions of the oral mucosa. Clin Oral Investig 15:315-320, 2011. Kruit WH, van Ojik HH, Brichard VG, Escudier B, Dorval T, Dreno B, Patel P, van Baren N, Avril MF, Piperno S, Khammari A, Stas M, Ritter G, Lethe B,Godelaine D, Brasseur F, Zhang Y, van der Bruggen P, Boon T, Eggermont AM, Marchand M. Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. Int J Cancer 117:596-604, 2005. Kocher T, Schultz-thater E, Gudat F, Schaefer C, Casorati G, Juretic A, Willimann T, Harder F, Heberer M, Spagnoli GC. Identification and intracellular location of MAGE-3 gene product. Cancer Res 55;2236-2239, 1995. Laduron S. MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 32:4340-4350, 2004. Lopez-Sanchez N, Gonzalez-Fernandez Z, Niinobe M, Yoshikawa K, Frade JM. Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins. Physiol Genomics 30:156-171, 2007. Ma Z, Khatlani TS, Ohno K, Sasaki K, Inokuma H, Onishi T. Cloning and sequencing of canine MAGE cDNA. Tissue Antigens 53:166-169, 2000. Marchand M, van Baren N, Weynants P. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 80:219-230, 1999. Marchand M, Weynants P, Rankin E, Arienti F, Belli F, Parmiani G, Cascinelli N, Boutlond A, Vanwuck R, Humblet Y, Canon JL, Laurent C, Naeyaert JM, Plagne R, Deraemaeker R, Knuth A, Jager E, Brasseur F, Herman J, Couiae PG, Boon T. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 63:883-885, 1995. Mellersh C. Give a dog a genome. The Veterinary Journal 178:46-52,2008. Mueller JL, Mahadevaiah SK, Park PJ, Warbuton PE, Page DC, Turner JM. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet 40:794-799, 2008. Nauts HC. Bacteria and cancer-antagonisms and benefits. Cancer Surv 8:713-723,1989. Old LJ & Chen YT. New paths in human cancer serology. J Exp Med 187:1163-1167, 1998. Pastorcic-Grgic M, Sarcevic B, Dosen D, Juretic A, Spagnoli Gc, Grgic M. Prognostic value of MAGE-A and NY-ESO-1 expression in pharyngeal cancer. Head Neck 32:1178-1184, 2010. Peikert T, Specks U, Farver C, Erzurum SC, Comhair SA. Melanoma antigen A4 is expressed in non-small cell lung cancers and promotes apoptosis. Cancer Res 66:4693-4700, 2006. Ramos-vara JA, Beissenherz M, Miller M, Johnson GC, Pace LW, Fard A, Kottler SJ. Retrospective study of 338 canine oral melanomas with clinical histologic, and immunohistochemical review of 129 cases. Vet Pathol 37:597-608, 2000. Ries J, Vairaktaris E, Mollaoglu N, Wiltfang J, Neukam FW, Nkenke E. Expression of melanoma-associated antigens in oral squamous cell carcinoma. J Oral Pathol Med 37:88-93, 2008. Rimoldi D, Salvi S, Schultz-Thater E, Spagnoli GC, Cerottini JC. Anti-MAGE-3 antibody 57B and anti-MAGE-1 antibody 6C1 can be used to study different proteins of the MAGE-A family. Int J Cancer 86:749-751, 2000. Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer immune 4:1-12,2004. Schultz-thater E, Juretic DP, Luscher U, Siegrist W, Harder F, Heberer M, Zuber M, Spagnoli GC. MAGE-1 gene product is a cytoplasmic protein. Int J Cancer 59;435-439, 1994. Simpson AJG, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens gametogenesis and cancer. Nature Review Cancer 5:615-625, 2005. Suzuki S, Sasajima K, Sato Y, Watanabe H, Matsutani T, Iida S, Hosone M, Tsukui T, Maeda S, Shimizu K, Tajiri T. MAGE-A protein and MAGE-A10 gene expressions in liver metastasis in patients with stomach cancer. Br J Cancer 99:350-356, 2008. Theon AP, Rodriguez C, Madewell BR. Analysis of prognostic factors and patterns of failure in dogs with malignant oral tumors treated with megavoltage irradiation. J Am Vet Med Assoc 210:778-784, 1997. Tyagi P & Mirakhur B. MAGRIT: The largest-ever phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin Lung Cancer 10:371-374, 2009. Van der Bruggen P. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643-1647, 1991. Van Pel A, Van Der Bruggen P, Coulie PG, Brichard VG, Lethe B, Van DenEynde B, Uyttenhove C, Renauld JC, Boon T. Genes coding for tumour antigens recognized by ctyolytic T lymphocytes. Immunological Reviews. 145:229-250, 1995. Vanstreenkiste JF, Zielinski M, Dahabreh IJ Linder A, Lehmann F, Gruselle O, TherasseP, Louahed J, Brichard VG. Association of gene expression signature and clinical efficacy of MAGE-A3 antigen-specific cancer immunotherapeutic (ASCI) as adjuvant therapy in resected stage IB/II non-small cell lung cancer (NSCLC). J Clin Oncol 26:397, 2008. Wang Y, Wu XJ, Zhao AL, Yuan YH, Chen YT, Jungbluth AA, Gnjatic S, Santiago D, Ritter G, Chen WF, Old LJ, Ji JF. Cancer/testis antigen expression and autologous humorial immunity to NY-ESO-1 in gastric cancer. Cancer Immun 4:11-17, 2004. Wilson GP, Hayes HM. Castration for treatment of perianal gland neoplasms in the dog. J Amer Vet Med Assoc 174:1301-1303, 1979. Yang B, O'Herrin SM, Wu J. MAGE-A, mMage-b, and MAGE-C proteins from complexes with KAPI and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 67:9954-9962, 2007. Yoshida N, Abe H, Ohkumi T, Wakita D, Sato M, Noguchi D, Miyamoto M, Morikawa T, Kondo S, Ikeda H, Nishimura T. Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens and T cell infiltration in non-small cell lung carcinoma and their prognostic significance. Int J Oncol 28:1089-1098, 2006.
黑色素細胞瘤抗原-A (Melanoma antigen-A, MAGE-A)是一種主要廣泛表現於各種腫瘤中的抗原,然而,在正常組織中只表現在人類的胎盤和睪丸,並且高度表現MAGE-A抗原的病患相較於其它病患通常會有較差的預後。而MAGE-A在狗的表現情形,根據本實驗室先前的研究,到目前為止可知在狗正常組織MAGE-A蛋白質的表現只侷限在睪丸及卵細胞中 而多種間質來源的腫瘤中也可發現MAGE-A蛋白質的表現。本次實驗的主要目的是分別以免疫組織化學染色法及逆轉錄聚合酶連鎖反應偵測狗正常睪丸及多種惡性腫瘤中的MAGE-A蛋白質和轉錄物的表現。免疫組織化學染色法使用的是抗體是鼠抗人的單株抗體「6C1」,此抗體可成功偵測人類的MAGE-A1, -A2, -A3, -A4, -A6, -A10, -A12。聚合酶連鎖反應的引子則是由GenBank中狗MAGE-A相關基因序列的保留片段來進行設計。最終本實驗共有10個正常睪丸及44個惡性腫瘤組織進行分析。其中44個惡性腫瘤包含4個纖維組織肉瘤、5個脂肪肉瘤、3個惡性周邊神經鞘瘤、3個傳染性花柳性腫瘤、2個血管肉瘤、5個惡性黑色素瘤、4個淋巴瘤、1個組織細胞肉瘤、5個肥大細胞瘤、2個黏液肉瘤、4個骨肉瘤、3個漿細胞瘤和3個惡性鱗狀上皮細胞瘤。聚合酶連鎖反應的產物大小為379 bp,在本實驗中將此產物命名為MAGE-A379。免疫組織化學染色法及逆轉錄聚合酶連鎖反應的結果相比下可知MAGE-A379 RNA是確實存在於正常睪丸及惡性腫瘤中的。在正常睪丸中MAGE-A蛋白質及MAGE-A379表現率皆為100%。而在惡性腫瘤中MAGE-A379的表現率為88.6% (39/44),是高於MAEG-A蛋白質的表現率。而在黑色素瘤、血管肉瘤、惡性周邊神經鞘瘤、傳染性花柳性腫瘤、纖維組織肉瘤、惡性黏液肉瘤和骨肉瘤中MAGE-A379的表現率為100%。將這39個惡性腫瘤中的MAGE-A379進行序列比對分析,其彼此的相似度為78.8%至100%。接著將這39條序列進行親源演化分析,可以發現在同一種腫瘤類別中其關係是較不同腫瘤來得接近的。根據此分析結果,我們推測在犬惡性腫瘤中的主要表現的MAGE-A亞型會因為腫瘤類型的不同而有所變化。總結來說,根據免疫組織化學染色法及逆轉錄聚合酶連鎖反應的結果,可知MAGE-A在犬正常睪丸及惡性腫瘤中具有穩定的表現,相信未來MAGE-A可能成為一個十分具有潛力的犬惡性腫瘤標記。

Melanoma antigen-A (MAGE-A) predominately expressed in tumors, whereas expression in normal tissue was limited to placentas and testes in human and the high expression of MAGE-A was also associated with poor outcome. Up to now, little is known about the expression of MAGE-A in dogs. Our previous study indicated that the expression of MAGE-A was restricted in canine testes and oocytes, and was predominately expressed in various types of mesenchymal tumors. The aim of this study is to detect the MAGE-A proteins and the MAGE-A transcripts in normal testes and various malignant tumors by immunohistochemistry (IHC) staining and reverse transcription polymerase chain reaction (RT-PCR), respectively. The primary antibody was mouse anti-human monoclonal antibody 6C1 against human MAGE-A1,-A2, -A3, -A4, -A6, -A10, -A12. A pair of primers was designed to target the conserved region of canine MAGE-A members. In total, 10 normal testes from dogs in varied ages and 44 tumors including 4 fibrosarcomas, 5 liposarcomas, 3 malignant peripheral nerves sheath tumors (MPNSTs), 3 transmissible venereal tumors (TVTs), 2 hemangiosarcomas (HSAs), 5 melanomas, 4 lymphomas, 1 histocytic sarcoma, 5 mast cell tumors, 2 myxosarcomas, 4 osteosarcomas, 3 plasmacytomas ,and 3 squamous cell carcinomas were analyzed. Given the size of product amplified by PCR was 379 bp, the amplicon was named MAGE-A379 herein. Consistent with IHC results, MAGE-A379 RNA was indeed expressed in most malignant tumors and normal canine testes. In normal testes, the positive rate of MAGE-A379 was 100% that was same as the result of IHC. In malignant tumors, the positive rate of MAGE-A379 was 88.6% (39/44), higher than that of IHC. Further, the expression of MAGE-A379 was 100% in melanomas, HSAs, MPNSTs, TVTs, fibrosarcomas, mxyosarcomas and osteosarcomas. Sequence alignment indicated that MAGE-A379 in malignant tumors shared identities ranging from 78.8% to 100%. Phylogenetic analysis of MAGE-A379 in malignant tumors indicated that the MAGE-A sequences were much closely related between the same tumor type than that between different tumor types. It was speculated that expression of the MAGE-A subtypes in malignant tumors might be varied with the different tumor types. Taken together, both IHC and RT-PCR showed MAGE-A was stable expressed in normal testes and malignant tumors. It might be a potential marker for canine malignant tumors.
其他識別: U0005-1107201113131500
Appears in Collections:獸醫學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.