Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13016
標題: 葛根芩連湯製備條件最適化及其效用跟安全性的評估
Optimizing the preparation methods of Gegenqinlian decoction with the assessments of its efficacy and safety
作者: 張書豪
Chang, Shu-Hao
關鍵字: 葛根芩連湯;‘Ge-Gen-Qin-Lian' decoction;葛根;炙甘草;黃芩;黃連;水萃取;醇沉;抗菌;抗發炎;急毒性;Radix Puerariae;Glycyrrhizae Radix;Radix Scutellaria;Rhizoma Coptidis;water extraction;alcohol precipitation;antimicrobial;anti-inflammatory;acute oral toxicity
出版社: 獸醫學系暨研究所
引用: Prasain, J.K., et al., Identification of puerarin and its metabolites in rats by liquid chromatography-tandem mass spectrometry. J Agric Food Chem, 2004. 52(12): p. 3708-12. 2. Chiang, H.M., et al., Life-threatening interaction between the root extract of Pueraria lobata and methotrexate in rats. Toxicol Appl Pharmacol, 2005. 209(3): p. 263-8. 3. Bass, R., et al., [The LD50 in comparison with acute toxicity. A critical evaluation of the present method]. Arzneimittelforschung, 1983. 33(1): p. 81-3. 4. Cheng, S.Y., et al., The hypoglycemic effects of soy isoflavones on postmenopausal women. J Womens Health (Larchmt), 2004. 13(10): p. 1080-6. 5. Petri Nahas, E., et al., Benefits of soy germ isoflavones in postmenopausal women with contraindication for conventional hormone replacement therapy. Maturitas, 2004. 48(4): p. 372-80. 6. 朱建军, 葛根异黄酮的作用. 锡林郭勒职业学院学报, 2007(1): p. 30-1. 7. Meezan, E., et al., Contrasting effects of puerarin and daidzin on glucose homeostasis in mice. J Agric Food Chem, 2005. 53(22): p. 8760-7. 8. Cai, R.L., et al., Antihypertensive effect of total flavone extracts from Puerariae Radix. J Ethnopharmacol, 2011. 133(1): p. 177-83. 9. Gao, Z., et al., Free-radical scavenging and mechanism study of flavonoids extracted from the radix of Scutellaria baicalensis Georgi Applied Magnetic Resonance 2000. 19(1): p. 35-44. 10. Remppis, A., et al., Rhizoma Coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NFkappaB-dependent pathway. Mediators Inflamm, 2010. 2010: p. 194896. 11. Kong, W., et al., Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med, 2004. 10(12): p. 1344-51. 12. Yan, Z.Q. and G.K. Hansson, Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev, 2007. 219: p. 187-203. 13. Chen, F.L., et al., Berberine inhibits the expression of TNFalpha, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARgamma pathway. Endocrine, 2008. 33(3): p. 331-7. 14. Li, K., et al., Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage. Cell Res, 2009. 19(8): p. 1006-17. 15. Kim, S., et al., Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules, 2008. 13(12): p. 2975-85. 16. Ho, Y.T., et al., Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9. Cancer Lett, 2009. 279(2): p. 155-62. 17. Hsieh, Y.S., et al., Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. J Agric Food Chem, 2007. 55(25): p. 10437-45. 18. Gao, Z., et al., Effect of berberine on expression of hepatocyte nuclear factor-4alpha in rats with fructose-induced insulin resistance. J Huazhong Univ Sci Technolog Med Sci, 2008. 28(3): p. 261-5. 19. Nakamura, T., T. Fujii, and A. Ichihara, Enzyme leakage due to change of membrane permeability of primary cultured rat hepatocytes treated with various hepatotoxins and its prevention by glycyrrhizin. Cell Biol Toxicol, 1985. 1(4): p. 285-95. 20. Gumpricht, E., et al., Licorice compounds glycyrrhizin and 18beta-glycyrrhetinic acid are potent modulators of bile acid-induced cytotoxicity in rat hepatocytes. J Biol Chem, 2005. 280(11): p. 10556-63. 21. 薛红卫 and 周超凡, 甘草的临床合理使用. 中医杂志, 2011. 52(4): p. 346-348. 22. Wu, Y.T., et al., Azathioprine hepatotoxicity and the protective effect of liquorice and glycyrrhizic acid. Phytother Res, 2006. 20(8): p. 640-5. 23. 邓毅 and 宁艳梅, 甘草甘遂配伍对小鼠血清GPT、GOT、LDH 影响的实验研究. 中医研究, 2007. 20(3): p. 15-6. 24. van Rossum, T.G., et al., Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther, 1998. 12(3): p. 199-205. 25. Raphael, T.J. and G. Kuttan, Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine, 2003. 10(6-7): p. 483-9. 26. Male, D., et al., Immunology. 2006, Canada: Elsevier. 15-16, 128-129. 27. Shibata, T., K. Nagata, and Y. Kobayashi, The mechanism underlying the appearance of late apoptotic neutrophils and subsequent TNF-alpha production at a late stage during Staphylococcus aureus bioparticle-induced peritoneal inflammation in inducible NO synthase-deficient mice. Biochim Biophys Acta, 2010. 1802(11): p. 1105-11. 28. Ulevitch, R.J. and P.S. Tobias, Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol, 1999. 11(1): p. 19-22. 29. Miyoshi, M., et al., Oral administration of tributyrin increases concentration of butyrate in the portal vein and prevents lipopolysaccharide-induced liver injury in rats. Clin Nutr, 2011. 30(2): p. 252-8. 30. Schroder, N.W., et al., Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem, 2003. 278(18): p. 15587-94. 31. Jiang, X.C., et al., Point mutagenesis of positively charged amino acids of cholesteryl ester transfer protein: conserved residues within the lipid transfer/lipopolysaccharide binding protein gene family essential for function. Biochemistry, 1995. 34(21): p. 7258-63. 32. Schumann, R.R., et al., Structure and function of lipopolysaccharide binding protein. Science, 1990. 249(4975): p. 1429-31. 33. Frey, E.A., et al., Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med, 1992. 176(6): p. 1665-71. 34. Pugin, J., et al., Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A, 1993. 90(7): p. 2744-8. 35. Aulock, S.V., et al., Gender difference in cytokine secretion on immune stimulation with LPS and LTA. J Interferon Cytokine Res, 2006. 26(12): p. 887-92. 36. Gao, B., W.I. Jeong, and Z. Tian, Liver: An organ with predominant innate immunity. Hepatology, 2008. 47(2): p. 729-36. 37. Matsumura, T., et al., Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J Interferon Cytokine Res, 2000. 20(10): p. 915-21. 38. Senga, F., et al., Minus charge stimulation prevents LPS-induced liver injury by reduction of nitric oxide. J Clin Biochem Nutr, 2008. 42(3): p. 222-7. 39. Hon, W.M., K.H. Lee, and H.E. Khoo, Nitric oxide in liver diseases: friend, foe, or just passerby? Ann N Y Acad Sci, 2002. 962: p. 275-95. 40. Minter, R.M., et al., LPS-binding protein mediates LPS-induced liver injury and mortality in the setting of biliary obstruction. Am J Physiol Gastrointest Liver Physiol, 2009. 296(1): p. G45-54. 41. Lehner, M.D., et al., Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators. J Immunol, 2001. 166(8): p. 5161-7. 42. Opitz, B., et al., Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem, 2001. 276(25): p. 22041-7. 43. Poltorak, A., et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998. 282(5396): p. 2085-8. 44. Ulivi, V., et al., A common pathway in differentiation and inflammation: p38 mediates expression of the acute phase SIP24 iron binding lipocalin in chondrocytes. J Cell Physiol, 2006. 206(3): p. 728-37. 45. Walloschke, B., H. Fuhrmann, and J. Schumann, Macrophage cell line RAW264.7 but not P-388D1 is an appropriate in vitro-model for studying oxidative burst as well as cytokine production in context of fatty acid enrichment. Cell Immunol, 2010. 262(1): p. 58-61. 46. Wilms, H., et al., Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation, 2010. 7: p. 30. 47. Leizer, A.L., et al., Regulation of Inflammation by the NF-kappaB Pathway in Ovarian Cancer Stem Cells. Am J Reprod Immunol, 2011. 65(4): p. 438-47. 48. Lu, H.T., et al., Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J, 1999. 18(7): p. 1845-57. 49. Allen, M., et al., Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med, 2000. 191(5): p. 859-70. 50. Wysk, M., et al., Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc Natl Acad Sci U S A, 1999. 96(7): p. 3763-8. 51. Badger, A.M., et al., Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther, 1996. 279(3): p. 1453-61. 52. Jackson, J.R., et al., Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther, 1998. 284(2): p. 687-92. 53. Grisham, M.B., D. Jourd''Heuil, and D.A. Wink, Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites:implications in inflammation. Am J Physiol, 1999. 276(2 Pt 1): p. G315-21. 54. Jo, H.Y., et al., The inhibitory effect of quercitrin gallate on iNOS expression induced by lipopolysaccharide in Balb/c mice. J Vet Sci, 2008. 9(3): p. 267-72. 55. Aktan, F., iNOS-mediated nitric oxide production and its regulation. Life Sci, 2004. 75(6): p. 639-53. 56. Xie, Q.W., et al., Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science, 1992. 256(5054): p. 225-8. 57. Seki, E. and D.A. Brenner, Toll-like receptors and adaptor molecules in liver disease: update. Hepatology, 2008. 48(1): p. 322-35. 58. Gay, N.J. and F.J. Keith, Drosophila Toll and IL-1 receptor. Nature, 1991. 351(6325): p. 355-6. 59. Israel, A., The IKK complex: an integrator of all signals that activate NF-kappaB? Trends Cell Biol, 2000. 10(4): p. 129-33. 60. Chaplin, D.D., 1. Overview of the human immune response. J Allergy Clin Immunol, 2006. 117(2 Suppl Mini-Primer): p. S430-5. 61. Chamberlain, L.M., et al., Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models. J Biomed Mater Res A, 2009. 88(4): p. 858-71. 62. TIB-71™. Available from: http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=TIB-71&Template=cellBiology. 63. 基準方劑葛根黃芩黃連湯. Available from: http://www.ccmp.gov.tw/information/formula_detail.asp?no=110&selno=0&relno=549. 64. 金 慧, 王 彦, and 阎. 超, 葛根芩连汤入血成分的归属. 中国中药杂志, 2008. 33(12): p. 2687-91. 65. Weber, H.A., et al., Chemical comparison of goldenseal (Hydrastis canadensis L.) root powder from three commercial suppliers. J Agric Food Chem, 2003. 51(25): p. 7352-8. 66. Chiu, P.E. and L.S. Lai, Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. Int J Food Microbiol, 2010. 139(1-2): p. 23-30. 67. Kwon, O.K., et al., Anti-inflammatory effects of methanol extracts of the root of Lilium lancifolium on LPS-stimulated Raw264.7 cells. J Ethnopharmacol, 2010. 130(1): p. 28-34. 68. Chandrasekaran, C.V., et al., Evaluation of the genotoxic potential and acute oral toxicity of standardized extract of Andrographis paniculata (KalmCold). Food Chem Toxicol, 2009. 47(8): p. 1892-902. 69. 陈勇, et al., 中药醇沉工艺及装备研究进展与思考. 世界科学技术—中医药现代化★思路与方法, 2007. 9(5). 70. 肖琼 and 沈平女襄, 中药醇沉工艺的关键影响因素. 中成药, 2005. 27(2): p. 143-4. 71. 赵陆军, 徐思康, and 张保献, 中药水提取液常用精制方法概述. 中国中医药信息杂志, 2000. 7(11): p. 47-8. 72. 孙月霞 and 吴淑娥, 初膏浓度对醇沉效果的影响. 基层中药杂志, 2000. 14(5): p. 36. 73. 张兆旺 and 孙秀梅, 中药水提礴沉淀孩应用中住意的问题. 山东中医学院学报, 1995. 19(6): p. 421-2. 74. 刘苗, et al., 中药醇沉工艺及设备浅析. 中成药, 2007. 29(8): p. 1202-4. 75. 张友菊 and 周. 昕, 《伤寒论》含黄连方剂12 首对8 种细菌的抗菌作用. 现代中西医结合杂志, 2008. 17(10): p. 1478-9. 76. Freshney, R.I., CULTURE OF ANIMAL CELLS. A Manual of Basic Technique. Third ed. 1994, New York: Wiley-Liss. 156, 280. 77. Baehner, R.L., L.A. Boxer, and J. Davis, The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood, 1976. 48(2): p. 309-13. 78. Hope, B.T., et al., Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A, 1991. 88(7): p. 2811-4. 79. Pozzolini, M., et al., Interference in MTT cell viability assay in activated macrophage cell line. Anal Biochem, 2003. 313(2): p. 338-41. 80. Clinical Laboratory Parameters for Crl:WI(Han) Rats. 11/13/2010; Available from: http://www.criver.com/en-US/Search/Pages/results.aspx?k=parameters for Crl:WI&s=en-US.
摘要: 
摘要
葛根芩連湯是由葛根、炙甘草、黃芩和黃連四味中藥熬煮而成,在東漢張仲景所著的傷寒論中其主要效能是清熱、解表。清熱意指有降低體內熱源的功能,解表為幫助出汗,同樣有發散溫度之功效還可發洩疹毒和消腫,現代科學證實其功效不只如此。
衛生署中醫藥委員已規範其基準方劑比例跟成人一日飲片量,但在製程上無硬性規定。中藥製備通常包含水煎、濃縮、加乙醇並靜置以使無療效的物質沉澱,再烘乾上清液得浸膏後再進一步添加賦形劑成粉劑。本研究目的在探討水萃取、醇沉等製備條件的最適化,以求達到減少藥物服用體積及獲得足夠的治療效果。目前探討範圍包括何種水萃與醇沉條件能使時間、水跟乙醇的耗費較少,且獲得足夠的有效治療成分 (葛根素、黃芩苷、黃芩素、小蘗鹼跟甘草酸);再以醇沉的中藥液進行細胞抗發炎、抗菌跟急毒性研究。
結果,以藥材重量6倍的水煎煮葛根芩連飲片2小時,水萃液濃縮至密度1.111 g/mL得初浸膏,再加入乙醇至初浸膏最終含醇濃度60 %,在4℃冰箱靜置24小時後,將上清液乾燥得到流浸膏,此為目前探討出最經濟的製程。此外,藥液能有效降低RAW264.7細胞株受細菌毒素刺激後一氧化氮的產量;有抑制金黃色葡萄球菌、沙門氏鼠傷寒桿菌、綠膿桿菌的能力;以相對人體16倍的劑量投與大鼠,無臨床症狀或死亡產生,故此製程可有效獲得無毒的葛根芩連湯之濃縮製劑。

Abstract
The ‘Ge-Gen-Qin-Lian' decoction is made from four kinds of Chinese medicine: Radix Puerariae, Glycyrrhizae Radix, Radix Scutellaria, and RhizomaCoptidis. The major applications are anti-inflammation, promoting sweat, measle elimination, and reduction of swelling. However, modern technology has proved that this decoction owns more therapeutic effects than those just mentioned.
The dose of benchmark formula is already published by the Department of Health Committee on Chinese Medicine and there is no mandatory for the manufacture procedure. The common preparations for Chinese medicine include water extraction, condensation, alcohol precipitation, drying by heat, and the addition of excipients. This research focused on searching the economic manufacture procedure with extracting high amounts of effective contents by water extraction and alcohol precipitation, as well as the studying the anti-inflammatory ability, antimicrobial abilities, and toxicity of product.
As a result, the most economic processes is by extracting the decoction pieces with 6-fold of water for 2 h, concentrate the extraction to density of 1.111 g/mL, precipitating the first extraction with 60 % ethanol concentration, settling the liquid extract in 4℃ for 24 h, and drying to form the powder of ‘Ge-Gen-Qin-Lian' decoction. In the respect of anti-inflammation, the sample could reduce nitric oxide production after lipopolysaccharide stimulation in RAW264.7 cell line. Moreover, this developed sample could effectively against Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas aeruginosa. There is no clinical sign or death happened after feeding mice with 16-fold recommended daily dose of this product for human. Thus, this study has developed an economic procedure to manufacture ‘Ge-Gen-Qin-Lian' decoction with good therapeutic effect and being safe to use.
URI: http://hdl.handle.net/11455/13016
其他識別: U0005-2408201101580800
Appears in Collections:獸醫學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.