Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13041
標題: 領角鴞糞中醣皮質酮年週期變動之研究
Annual pattern of fecal corticoid excretion in Collared-Scope owls
作者: 鍾岡樺
Chung, Kang-Hua
關鍵字: Collared-Scope owls;領角鴞;fecal corticoid;Non-invasive;corticosterone;醣皮質酮;非侵入性;糞便
出版社: 獸醫學系暨研究所
引用: 1. 方偉宏。台灣鳥類全圖鑑。貓頭鷹出版社,台北,台灣,2010。 2. 向麗紋。圈養台灣獼猴糞腎上腺皮質醇之季節變化。碩士論文,國立屏東科技大學,屏東,台灣,2006。 3. 林文隆。臺灣中部森林領角鴞繁殖生物學初探。台灣猛禽研究 1:29-35,2003。 4. 林佩羿。移籠對領角鴞糞便中腎上腺皮質酮濃度變化之影響。碩士論文,國立中興大學獸醫學系,台中,台灣,2009。 5. 林依蓉,詹芳澤,王齡敏,林佩羿。特生中心野生動物急救站2006至2007年傷病野生鳥類病例分析。2008 年台灣鳥類論壇,台北,台灣, 2008。 6. 洪孝宇,詹芳澤,林依蓉,林佩羿,王齡敏,黃獻文。領角鴞和黑冠麻鷺繁殖期與氣溫的相關性。台灣生物多樣性研究 12:15-28,2010。 7. 張耿瑞。台灣黑熊糞中繁殖類固醇年週期變動之研究。碩士論文,國立中興大學,台中,台灣,2004。 8. 許松豪。台灣黑熊糞中性類固醇與其繁殖狀況之研究。碩士論文,國立中興大學獸醫學系,台中,台灣,2002。 9. 郭大智,劉顯義,陳發菊,宋雪華,王開榮,邱賢猛,湯純香,張和民,何廷美,陳猛,張貴權。大熊貓被毛中孕酮、睪酮含量的季節性變化。成都國際大熊貓保護學術研討會論文集,科學技術出版社 256-259,四川,中國,1994。 10. 陳婷婷。性類固醇荷爾蒙酵素免疫分析法的建立與小鼠睪固酮生成的分析. 台灣畜牧獸醫學會報 65:69-80,1995。 11. 曾翌碩。台灣的貓頭鷹。台中縣野鳥救傷保育學會。台中,台灣,2010。 12. 蔡錦文。世界貓頭鷹圖鑑。貓頭鷹出版社,台北,台灣, 2008。 13. 蘇品源。氣相層析質譜法測定不同代謝性壓力狀態下老鼠血液中皮質固醇酮的濃度。碩士論文,國立台灣師範大學. 台北,台灣,2002。 14. Astheimer LB, Buttemer WA, Wingfield JC. Corticosterone treatment has no effect on reproductive hormones or aggressive behavior in free-living male tree sparrows, Spizella arborea. Horm Behav 37: 31-39, 2000. 15. Baltic M, Jenni-Eiermann S, Arlettaz R, Palme R. A noninvasive technique to evaluate human-generated stress in the black grouse. Ann N Y Acad Sci 1046: 81-95, 2005. 16. Beuving G, Vonder GM. Effect of stressing factors on corticosterone levels in the plasma of laying hens. Gen Comp Endocrinol 35: 153-159, 1978. 17. Beuving G, Vonder GM. The influence of ovulation and oviposition on corticosterone levels in the plasma of laying hens. Gen Comp Endocrinol 44: 382-388, 1981. 18. Beuving G, Vonder GM. Comparison of the adrenal sensitivity to ACTH of laying hens with immobilization and plasma baseline levels of corticosterone. Gen Comp Endocrinol 62: 353-358, 1986. 19. Breuner CW, Orchinik M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol 175: 99-112, 2002. 20. Breuner CW, Wingfield JC, Romero LM. Diel rhythms of basal and stress-induced corticosterone in a wild, seasonal vertebrate, Gambel''s white-crowned sparrow. J Exp Zool 284: 334-342, 1999. 21. Carere C, Groothuis TG, Mostl E, Daan S, Koolhaas JM. Fecal corticosteroids in a territorial bird selected for different personalities: daily rhythm and the response to social stress. Horm Behav 43: 540-548, 2003. 22. Cavigelli SA. Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim Behav 57: 935-944, 1999. 23. Cavigelli SA, Monfort SL, Whitney TK, Mechref YS, Novotny M, McClintock MK. Frequent serial fecal corticoid measures from rats reflect circadian and ovarian corticosterone rhythms. J Endocrinol 184: 153-163, 2005. 24. Coe CL, Levine S. Diurnal and annual variation of adrenocortical activity in the squirrel monkey. Am J Primatol 35: 283-292, 1995. 25. Cyr NE, Romero LM. Fecal glucocorticoid metabolites of experimentally stressed captive and free-living starlings: implications for conservation research. Gen Comp Endocrinol 158: 20-28, 2008. 26. Dantzer B, McAdam AG, Palme R, Fletcher QE, Boutin S, Humphries MM, Boonstra R. Fecal cortisol metabolite levels in free-ranging North American red squirrels: Assay validation and the effects of reproductive condition. Gen Comp Endocrinol 167: 279-286, 2010. 27. Dehnhard M, Schreer A, Krone O, Jewgenow K, Krause M, Grossmann R. Measurement of plasma corticosterone and fecal glucocorticoid metabolites in the chicken (Gallus domesticus), the great cormorant (Phalacrocorax carbo), and the goshawk (Accipiter gentilis). Gen Comp Endocrinol 131: 345-352, 2003. 28. Engelmann M, Landgraf R, Wotjak CT. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25: 132-149, 2004. 29. Etches RJ. A radioimmunoassay for corticosterone and its application to the measurement of stress in poultry. Steroids 28: 763-773, 1976. 30. Freeman BM, Manning CC, Flack IH. The effects of restricted feeding on adrenal cortical activity in the immature domestic fowl. Br Poult Sci 22: 295-303, 1981. 31. Frigerio D, Dittami J, Mostl E, Kotrschal K. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen Comp Endocrinol 137: 29-36, 2004. 32. Frigerio D, Moestl E, Kotrschal K. Excreted metabolites of gonadal steroid hormones and corticosterone in greylag geese (Anser anser) from hatching to fledging. Gen Comp Endocrinol 124: 246-255, 2001. 33. Goldin BR, Adlercreutz H, Dwyer JT, Swenson L, Warram JH, Gorbach SL. Effect of diet on excretion of estrogens in pre- and postmenopausal women. Cancer Res 41: 3771-3773, 1981. 34. Goymann W. Noninvasive monitoring of hormones in bird droppings: physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann N Y Acad Sci 1046: 35-53, 2005. 35. Goymann W, Mostl E, Gwinner E. Non-invasive methods to measure androgen metabolites in excrements of European stonechats (Saxicola torquata rubicola). Gen Comp Endocrinol 129: 80-87, 2002. 36. Goymann W, Möstl E, Gwinner E. Corticosterone metabolites can be measured non-invasively in excreta of European stonechats (Saxicola torquata rubicola). Auk 119: 1167-1173, 2002 37. Griffin JE, Ojeda SR. The adrenal glands. In: Parker KL, Rainey WE, eds. Textbook of Endocrine Physiology. 4th ed. Oxford University Press, New York, USA, 319-330, 2004. 38. Halberg F, Albrecht PG, Bittner JJ. Corticosterone rhythm of mouse adrenal in relation to serum corticosterone and sampling. Am J Physiol 197: 1083-1085, 1959. 39. Harper JM, Austad SN. Effect of capture and season on fecal glucocorticoid levels in deer mice (Peromyscus maniculatus) and red-backed voles (Clethrionomys gapperi). Gen Comp Endocrinol 123: 337-344, 2001. 40. Heath JA, Dufty AM, Jr. Body condition and the adrenal stress response in captive American kestrel juveniles. Physiol Zool 71: 67-73, 1998. 41. Hirschenhauser K, Kotrschal K, Mostl E. Synthesis of measuring steroid metabolites in goose feces. Ann N Y Acad Sci 1046: 138-153, 2005. 42. Hirschenhauser K, Möstl E, Wallner B, Dittami J, Kotrschal K. Endocrine and behavioural responses of male graylag geese (Anser anser) to pairbond challenges during the reproductive season. Ethology 106: 63-77, 2000 43. Huber S, Palme R, Arnold W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen Comp Endocrinol 130: 48-54, 2003. 44. Jeronen E, Isometsa P, Hissa R, Pyornila A. Effect of acute temperature stress on the plasma catecholamine, corticosterone and metabolite levels in the pigeon. Comp Biochem Physiol C 55: 17-22, 1976. 45. Johnson AL, van Tienhoven A. Plasma concentrations and corticosterone relative to photoperiod, oviposition, and ovulation in the domestic hen. Gen Comp Endocrinol 43: 10-16, 1981. 46. Khan MZ, Altmann J, Isani SS, Yu J. A matter of time: evaluating the storage of fecal samples for steroid analysis. Gen Comp Endocrinol 128: 57-64, 2002. 47. Kitaysky AS, Kitaiskaia EV, Wingfield JC, Piatt JF. Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks. J Comp Physiol B 171: 701-709, 2001. 48. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MA, Blokhuis HJ. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23: 925-935, 1999. 49. Kotrschal K, Hirschenhauser K, MÖSTL E. The relationship between social stress and dominance is seasonal in greylag geese. Anim Behav 55: 171-176, 1998. 50. Kotrschal K, Dittami J, Hirschenhauser K, Möstl E, Peczely P. Effects of physiological and social challenges in different seasons on fecal testosterone and corticosterone in male domestic geese (Anser domesticus). Acta Ethol 2: 115-122, 2000. 51. Krieger DT. Rhythms in CRF, ACTH, and corticosterone. In: Endocrine Rhythms: Comprehensive Endocrinology Series. Raven Press, New York, USA, 123-142, 1979. 52. Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25: 150-176, 2004. 53. Le Ninan F, Cherel Y, Sardet C, Le Maho Y. Plasma hormone levels in relation to lipid and protein metabolism during prolonged fasting in king penguin chicks. Gen Comp Endocrinol 71: 331-337, 1988. 54. Levine S, Cirulli F. Stress and coping. In: Alleva E, Bateson P, eds. The Living World. Part One: Biology of Behaviour. Academic Press, San Diego, USA, 109-120, 2001. 55. Ludders JW, Langenberg JA, Czekala NM, Erb HN. Fecal corticosterone reflects serum corticosterone in Florida sandhill cranes. J Wildl Dis 37: 646-652, 2001. 56. Lynch JW, Ziegler TE, Strier KB. Individual and seasonal variation in fecal testosterone and cortisol levels of wild male tufted capuchin monkeys, Cebus apella nigritus. Horm Behav 41: 275-287, 2002. 57. Martin F, Peltonen J, Laatikainen T, Pulkkinen M, Adlercreutz H. Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem 6: 1339-1346, 1975. 58. Mateos GG, Sell JL, Eastwood JA. Rate of food passage (transit time) as influenced by level of supplemental fat. Poult Sci 61: 94-100, 1982. 59. Millspaugh JJ, Washburn BE. Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138: 189-199, 2004. 60. Moore MC, Thompson CW, Marler CA. Reciprocal changes in corticosterone and testosterone levels following acute and chronic handling stress in the tree lizard, Urosaurus ornatus. Gen Comp Endocrinol 81: 217-226, 1991. 61. Mostl E, Maggs JL, Schrotter G, Besenfelder U, Palme R. Measurement of cortisol metabolites in faeces of ruminants. Vet Res Commun 26: 127-139, 2002. 62. Mostl E, Messmann S, Bagu E, Robia C, Palme R. Measurement of glucocorticoid metabolite concentrations in faeces of domestic livestock. Zentralbl Veterinarmed A 46: 621-631, 1999. 63. Mostl E, Palme R. Hormones as indicators of stress. Domest Anim Endocrinol 23: 67-74, 2002. 64. Mostl E, Rettenbacher S, Palme R. Measurement of corticosterone metabolites in birds'' droppings: an analytical approach. Ann N Y Acad Sci 1046: 17-34, 2005. 65. Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5: 25-44, 1984. 66. Nakagawa S, Möstl E, Waas JR. Validation of an enzyme immunoassay to measure faecal glucocorticoid metabolites from Adélie penguins (Pygoscelis adeliae): a noninvasive tool for the measurement of stress? Polar Biol 26: 491-493, 2003. 67. Ninnes CE, Waas JR, Ling N, Nakagawa S, Banks JC, Bell DG, Bright A, Carey PW, Chandler J, Hudson QJ, Ingram JR, Lyall K, Morgan DK, Stevens MI, Wallace J, Mostl E. Comparing plasma and faecal measures of steroid hormones in Adelie penguins Pygoscelis adeliae. J Comp Physiol B 180: 83-94, 2010. 68. Norman AW, Litwack G. Steroid hormones: Chemistry, biosynthesis, and metabolism. In: Hormones. 2nd ed. Academic Press, San Diego, USA, 49-86, 1997. 69. Orchinik M. Glucocorticoid, stress, and behavior: shifting the timeframe. Horm Behav 34: 320-327, 1998. 70. Palme R. Measuring fecal steroids: guidelines for practical application. Ann N Y Acad Sci 1046: 75-80, 2005. 71. Palme R, Rettenbacher S, Touma C, El-Bahr SM, Mostl E. Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann N Y Acad Sci 1040: 162-171, 2005. 72. Pereira RJ, Granzinolli MA, Duarte JM. Annual profile of fecal androgen and glucocorticoid levels in free-living male American kestrels from southern mid-latitude areas. Gen Comp Endocrinol 166: 94-103, 2010. 73. Popp LG, Serafini PP, Reghelin AL, Spercoski KM, Roper JJ, Morais RN. Annual pattern of fecal corticoid excretion in captive Red-tailed parrots (Amazona brasiliensis). J Comp Physiol B 178: 487-493, 2008. 74. Queyras A, Carosi M. Non-invasive techniques for analysing hormonal indicators of stress. Ann Ist Super Sanita 40: 211-221, 2004. 75. Qureshi MS, Habib G, Siddiwqui MM, Ahmad N, Samad HA. Milk progesterone profiles in various reproductive states in dairy buffaloes under field conditions. Proc Natl Sci Counc Repub China B 24: 70-75, 2000. 76. Rettenbacher S, Mostl E, Hackl R, Ghareeb K, Palme R. Measurement of corticosterone metabolites in chicken droppings. Br Poult Sci 45: 704-711, 2004. 77. Romero LM. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128: 1-24, 2002. 78. Romero LM. Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19: 249-255, 2004. 79. Romero LM, Meister CJ, Cyr NE, Kenagy GJ, Wingfield JC. Seasonal glucocorticoid responses to capture in wild free-living mammals. Am J Physiol Regul Integr Comp Physiol 294: R614-622, 2008. 80. Romero LM, Remage-Healey L. Daily and seasonal variation in response to stress in captive starlings (Sturnus vulgaris): corticosterone. Gen Comp Endocrinol 119: 52-59, 2000. 81. Romero LM, Soma KK, Wingfield JC. The hypothalamus and adrenal regulate modulation of corticosterone release in redpolls (Carduelis flammea). Gen Comp Endocrinol 109: 347-355, 1998. 82. Sapolsky RM. Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D, McCarthy MM, eds. Behavioural Endocrinology. MIT University Press, Cambridge, USA, 409-450, 1992. 83. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21: 55-89, 2000. 84. Schatz S, Palme R. Measurement of faecal cortisol metabolites in cats and dogs: a non-invasive method for evaluating adrenocortical function. Vet Res Commun 25: 271-287, 2001. 85. Schwarzenberger F. The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. Int Zoo Yb 41: 52-74, 2007. 86. Sorato E, Kotrschal K. Hormonal and behavioural symmetries between the sexes in the Northern bald ibis. Gen Comp Endocrinol 146: 265-274, 2006. 87. Spelman LH, Fleming WJ, Davis GS, Stoskopf MK. Effect of exogenous adrenocorticotropic hormone administration on plasma corticosterone concentrations in American black ducks (Anas rubripes). J Wildl Dis 31: 136-141, 1995. 88. Starling AP, Charpentier MJ, Fitzpatrick C, Scordato ES, Drea CM. Seasonality, sociality, and reproduction: Long-term stressors of ring-tailed lemurs (Lemur catta). Horm Behav 57: 76-85, 2010. 89. Strier KB, Lynch JW, Ziegler TE. Hormonal changes during the mating and conception seasons of wild northern muriquis (Brachyteles arachnoides hypoxanthus). Am J Primatol 61: 85-99, 2003. 90. Tanabe Y, Yano T, Nakamura T. Steroid hormone synthesis and secretion by testes, ovary, and adrenals of embryonic and postembryonic ducks. Gen Comp Endocrinol 49: 144-153, 1983. 91. Terio KA, Citino SB, Brown JL. Fecal cortisol metabolite analysis for noninvasive monitoring of adrenocortical function in the cheetah (Acinonyx jubatus). J Zoo Wildl Med 30: 484-491, 1999. 92. Thiel D, Jenni-Eiermann S, Palme R. Measuring corticosterone metabolites in droppings of capercaillies (Tetrao urogallus). Ann N Y Acad Sci 1046: 96-108, 2005. 93. Touma C, Palme R. Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann N Y Acad Sci 1046: 54-74, 2005. 94. Touma C, Palme R, Sachser N. Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones. Horm Behav 45: 10-22, 2004. 95. Touma C, Sachser N, Mostl E, Palme R. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130: 267-278, 2003. 96. van Hierden YM, Korte SM, Ruesink EW, van Reenen CG, Engel B, Korte-Bouws GA, Koolhaas JM, Blokhuis HJ. Adrenocortical reactivity and central serotonin and dopamine turnover in young chicks from a high and low feather-pecking line of laying hens. Physiol Behav 75: 653-659, 2002. 97. Voncken JW, Baram TZ, Gonzales-Gomez I, Van Schaick H, Shih JC, Chen K, Groffen J, Heisterkamp N. Abnormal stress response and increased fighting behavior in mice lacking the bcr gene product. Int J Mol Med 2: 577-583, 1998. 98. Walsh MT, Beldegreen RA, Clubb SL, Chen CL. Effect of exogenous ACTH on serum corticosterone and cortisol concentrations in the Moluccan cockatoo (Cacatua moluccensis). Am J Vet Res 46: 1584-1588, 1985. 99. Washburn BE, Millspaugh JJ, Schulz JH, Jones SB, Mong T. Using fecal glucocorticoids for stress assessment in mourning doves. Condor 105: 696-706, 2003 100. Wasser SK, Bevis K, King G, Hanson E. Noninvasive Physiological Measures of Disturbance in the Northern Spotted Owl. Conserv biol 11: 1019-1022, 1997. 101. Wasser SK, Hunt KE. Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and northern spotted owl. Ann N Y Acad Sci 1046: 109-137, 2005. 102. Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL. A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen Comp Endocrinol 120: 260-275, 2000. 103. Wasser SK, Monfort SL, Southers J, Wildt DE. Excretion rates and metabolites of oestradiol and progesterone in baboon (Papio cynocephalus cynocephalus) faeces. J Reprod Fertil 101: 213-220, 1994. 104. Wasser SK, Thomas R, Nair PP, Guidry C, Southers J, Lucas J, Wildt DE, Monfort SL. Effects of dietary fibre on faecal steroid measurements in baboons (Papio cynocephalus cynocephalus). J Reprod Fertil 97: 569-574, 1993. 105. Welberg LA, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 13: 113-128, 2001. 106. Wells KMS, Washburn BE, Millspaugh JJ, Ryan MR, Hubbard MW. Effects of radio-transmitters on fecal glucocorticoid levels in captive Dickcissels. Condor 105: 805-810, 2003. 107. Whitten PL, Brockman DK, Stavisky RC. Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Am J Phys Anthropol Suppl 27: 1-23, 1998. 108. Wingfield JC, Sapolsky RM. Reproduction and resistance to stress: when and how. J Neuroendocrinol 15: 711-724, 2003. 109. Wingfield JC, Vleck CM, Moore MC. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J Exp Zool 264: 419-428, 1992. 110. Woodruff JA, Lacey EA, Bentley G. Contrasting fecal corticosterone metabolite levels in captive and free-living colonial tuco-tucos (Ctenomys sociabilis). J Exp Zool A Ecol Genet Physiol 313: 498-507, 2010.
摘要: 
領角鴞為台灣特有亞種,屬於珍貴稀有保育類。由於其生活習性和棲地與人類的活動範圍相近,因此領角鴞常因意外或人為干擾而成為救傷中心的常客。許多研究報告指出,緊迫的狀態會造成許多生理性的傷害,但對於評估領角鴞的緊迫狀態的研究則較少。本實驗應用非侵入之分析法檢驗領角鴞糞中醣皮質酮濃度,並建立一個年週期波動資料,以期提供繁殖時參考用。我們在2007年至2008年期間利用收容的10隻領角鴞分為六組實驗,四組配對組、兩組單獨籠飼,共收集糞便樣本576個。樣本萃取後以EIA酵素免疫分析法檢測醣皮質酮濃度。結果顯示所有個體的全年度醣皮質酮濃度變動在11月時濃度最低(353.91 ± 25.90 ng/ml);在3月時濃度最高(537.03 ± 40.40 ng/ml),次高峰濃度在12月時出現(501.74 ± 56.93 mg/ml),最高濃度與全年平均(443.83 ± 13.78 ng/ml)或最低濃度比較皆有顯著和極顯著的差異(p < 0.05;p < 0.01)。此結果與領角鴞行為觀察之產蛋育雛期主要在3至4月或求偶配對期在11至12月等現象一致,顯示糞便中醣皮質酮濃度檢驗法可反映領角鴞全年的繁殖生理與行為之變化。在季節波動分析發現所有個體的醣皮質酮濃度在春季時最高(529.46 ± 39.90 ng/ml),極顯著的較秋季高(366.90 ± 29.34 ng/ml, p < 0.01),由此結果推測領角鴞的繁殖季主要集中在春季;而秋季時可能因為較低的生理需求和環境較為舒適,故醣皮質酮濃度較低。繁殖季時之糞醣皮質酮濃度(486.75 ± 21.51 ng/ml)極顯著較非繁殖季之濃度(413.79 ± 17.18 ng/ml)高(p < 0.01),此證實動物體在繁殖季時需克服競爭而有較高的生理需求和繁殖行為上的緊迫壓力。另外,不同性別個體在醣皮質酮的濃度變動上仍具有相關性(四季,r = 0.9288;全年,r = 0.7604);配對處理的影響則在四季或全年的濃度變化上不具有顯著影響,與未配對的組別仍具有近高度的相關性(配對與未配對r > 0.58),並且仍須要修正研究方法來排除動物隻數和樣品數不足的問題。本研究所建立之全年度糞醣皮質酮濃度波動變化資料可應用在領角鴞的生態調查或復育計畫上之參考。

The collared-scope owls are the endemic subspecies of Taiwan and it was classified as rare valuable species. There living habit and habitat near to human life, so they become the common species of the wildlife rescue center. It''s well-known that stressful conditions would cause several harmful physiological conditions, our study is to evaluate the stress condition of these at-risk species. The purpose of present study is to investigate the fecal corticosterone metabolites (FCM) level of the collared-scope owls by the noninvasive methods, and established a profile of the annual pattern of fecal corticoid excretion. We used ten collared-scope owls to classified into six groups, four groups were couples, two groups were singtons. Totally 576 fecal samples were collected during 2007 to 2008, which were extracted then measured by the enzyme immunoassay (EIAs). The results of the annual pattern of FCM suggested that November had the lowest mean FCM (353.91 ± 25.90 ng/ml) while March had the highest (537.03 ± 40.40 ng/ml), and the second peak occurred around December (501.74 ± 56.93 ng/ml). Furthermore, the corticosterone level of March was significantly higher than the annual mean level(443.83 ± 13.78 ng/ml, p < 0.05) and was vary significantly higher than the month of the lowest level(p < 0.01). These results correlated with the timing of eggs laying occurred predominantly in March to April, while the period of courtship and copulation occurred in December toward January. The FCM also fluctuated with the seasons, spring had the highest FCM (529.46 ± 39.90 ng/ml) and it was vary significantly higher than autumn (the lowest, 366.90 ± 29.34 ng/ml, p < 0.01). We supposed that our collared-scope owls were breeding predominantly during spring, they might also have lower physiological and environmental stress during autumn. Moreover, Collared-scope owls had vary significantly higher level of FCM in breeding season (486.75 ± 21.51 ng/ml), compare to the Non-breeding season(413.79 ± 17.18 ng/ml, p < 0.01). it correspond to that animals have more physiological needs to overcome the challenges of competition and reproduction. Besides, it was correlation between genders (seasonal pattern, r = 0.9288; annual pattern, r = 0.7604) and the results of the couples compared to the singletons were similar on the FCM deviation in males and females in different comparison of pattern (each r > 0.58), and we need to modify the methods of the study to solve the problem of that the sample size is not enough. According to our results, the analysis of FCM is appropriate for assessing the changes of physiology status and reflecting the occurrence of breeding behavior on them. The annual profile of the FCM could be a reference for research and restoration purposes on the collared-scope owls.
URI: http://hdl.handle.net/11455/13041
其他識別: U0005-2508201110225500
Appears in Collections:獸醫學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.