Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13071
標題: 冬蟲夏草對大白鼠血糖、膽固醇與三酸甘油酯之影響
Effects of Cordyceps sinensis on Blood Glucose, Cholesterol and Triglyceride in Rats
作者: 陳佑欣
Chen, Yu-Hsin
關鍵字: Cordyceps sinensis;冬蟲夏草;Blood glucose;Cholesterol;Triglyceride;血糖;膽固醇;三酸甘油酯
出版社: 獸醫學系暨研究所
引用: 日本優良產品研究協會 (2006)。冬蟲夏草—滋補養生藥草。世茂出版有限公司 台灣行政院衛生署 (2011)。民國100年十大死因結果摘要表 陸欽堯、黎明 (1995)。抗衰老的中草藥。渡假出版社 17:92-94 陳國群 (2001)。最新內分泌學。藝軒出版社。 American diabetes association. Diagnosis and classification of diabetes mellitus. Diabetes Care 28: S37-S42, 2005 Avruch, J., 1998, Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182, 31-48. Aymerich, I., Foufelle, F., Ferre, P., Casado, F.J., Pastor-Anglada, M., 2006, Extracellular adenosine activates AMP-dependent protein kinase (AMPK). J Cell Sci 119, 1612-1621. Balon, T.W., Jasman, A.P., Zhu, J.S., 2002, A fermentation product of Cordyceps sinensis increases whole-body insulin sensitivity in rats. J Altern Complement Med 8, 315-323. Barbara B.K., Jeffrey S.F., 2000, Obesity and insulin resistance. J Clinical Invest 106, 473-481. Boden, G., Chen, X., Iqbal, N., 1998, Acute lowering of plasma fatty acids lowers basal insulin secretion in diabetic and nondiabetic subjects. Diabetes 47, 1609-1612. Choi, S.B., Park, C.H., Choi, M.K., Jun, D.W., Park, S., 2004, Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 68, 2257-2264. Chiou, Y.L., Lin, C.Y., 2011, The Extract of Cordyceps sinensis Inhibited airway inflammation by blocking NF-kappa B activity. Inflammation. Cheung, J.K., Li, J., Cheung, A.W., Zhu, Y., Zheng, K.Y., Bi, C.W., Duan, R., Choi, R.C., Lau, D.T., Dong, T.T., Lau, B.W., Tsim, K.W., 2009, Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. J Ethnopharmacol 124, 61-68. Clee, S.M., Attie, A.D., 2007, The genetic landscape of type 2 diabetes in mice. Endocr Rev 28, 48-83. Curry, D.L., 1971, Insulin secretory dynamics in response to slow-rise and square-wave stimuli. Am J Physiol 221, 324-328. Deitch, A.D., Sawicki, S.G., 1979, Effects of cordycepin on microtubules of cultured mammalian cells. Exp Cell Res 118, 1-13. de Souza, C.J., Hirshman, M.F., Horton, E.S., 1997, CL-316,243, a beta3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats. Diabetes 46, 1257-1263. Dyck, P.J., Kratz, K.M., Karnes, J.L., Litchy, W.J., Klein, R., Pach, J.M., Wilson, D.M., O''Brien, P.C., Melton, L.J., 3rd, Service, F.J., 1993, The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 43, 817-824. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C.C., Ramachandran, C., Gresser, M.J., Tremblay, M.L., Kennedy, B.P., 1999, Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544-1548. Fajans, S.S., Bell, G.I., Polonsky, K.S., 2001, Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345, 971-980. Feng, M.G., Zhou, Q.G., Feng, G.H., 1987, [Vasodilating effect of cultured Cordyceps sinensis (Berk) Sacc. mycelia in anesthetized dogs]. Zhong Yao Tong Bao 12, 41-45, 60. Ferrannini, E., Natali, A., 1991, Essential hypertension, metabolic disorders, and insulin resistance. Am Heart J 121, 1274-1282. Frederiksen, S., Malling, H., Klenow, H., 1965, Isolation of 3''-Deoxyadenosine (Cordycepin) from the Liquid Medium of Cordyceps Militaris (L. Ex Fr.) Link. Biochim Biophys Acta 95, 189-193. Furuya T., Hirotani M., Matsuzawa M., 1983, N6-(2-hydroxyethyl)adenosine, a biologically active compound from cultured mycelium of Cordyceps and Isaria species. Phytochemistry 22:2509-2512. Ganong WF. Endocrine function of pancreas & regulation of carbohydrate metabolism. In review of medical physiology. 18th ed., W.F. Ganong (ed.), Appleton &Lange , Stamford, Connecticut, USA, pp. 324-326, 1997. Gao, J., Lian, Z.Q., Zhu, P., Zhu, H.B., 2011, Lipid-lowering effect of cordycepin (3''-deoxyadenosine) from Cordyceps militaris on hyperlipidemic hamsters and rats. Yao Xue Xue Bao 46, 669-676. Gavin JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, Genuth S, Harris MI, Kahn R, Keen H, Knowler WC, Lebovitz H, Maclaren NK, Palmer JP, Raskin P, Rizza RA, Stren MP. Report of expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 25: S5-20, 2002 Guo, P., Kai, Q., Gao, J., Lian, Z.Q., Wu, C.M., Wu, C.A., Zhu, H.B., 2010, Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci 113, 395-403. Guo, J., Li, C., Wang, J., Liu, Y., Zhang, J., 2011, Vanadium-enriched Cordyceps sinensis, a contemporary treatment approach to both diabetes and depression in rats. Evid Based Complement Alternat Med 2011, 450316. Goldberg, R.B., Einhorn, D., Lucas, C.P., Rendell, M.S., Damsbo, P., Huang, W.C., Strange, P., Brodows, R.G., 1998, A randomized placebo-controlled trial of repaglinide in the treatment of type 2 diabetes. Diabetes Care 21, 1897-1903. Grodsky, G.M., Fanska, R.E., 1975, The in vitro perfused pancreas. Methods Enzymol 39, 364-372. Gluba, A., Mikhailidis, D.P., Lip, G.Y., Hannam, S., Rysz, J., Banach, M., 2012, Metabolic syndrome and renal disease. Int J Cardiol. Grundy, S.M., Hansen, B., Smith, S.C., Jr., Cleeman, J.I., Kahn, R.A., 2004, Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Arterioscler Thromb Vasc Biol 24, e19-24. Guilherme, A., Virbasius, J.V., Puri, V., Czech, M.P., 2008, Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9, 367-377. Jin, D.Q., Park, B.C., Lee, J.S., Choi, H.D., Lee, Y.S., Yang, J.H., Kim, J.A., 2004, Mycelial extract of Cordyceps ophioglossoides prevents neuronal cell death and ameliorates beta-amyloid peptide-induced memory deficits in rats. Biol Pharm Bull 27, 1126-1129. Kiho, T., Yamane, A., Hui, J., Usui, S., Ukai, S., 1996, Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull 19, 294-296. Kiho, T., Ookubo, K., Usui, S., Ukai, S., Hirano, K., 1999, Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol Pharm Bull 22, 966-970. Kim, Y.B., Nikoulina, S.E., Ciaraldi, T.P., Henry, R.R., Kahn, B.B., 1999, Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest 104, 733-741. Koh, J.H., Kim, J.M., Chang, U.J., Suh, H.J., 2003, Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biol Pharm Bull 26, 84-87. Kuo, Y.C., Lin, C.Y., Tsai, W.J., Wu, C.L., Chen, C.F., Shiao, M.S., 1994, Growth inhibitors against tumor cells in Cordyceps sinensis other than cordycepin and polysaccharides. Cancer Invest 12, 611-615. Kraegen, E.W., James, D.E., Jenkins, A.B., Chisholm, D.J., 1985, Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol 248, E353-362. Li, S.P., Yang, F.Q., Tsim, K.W., 2006a, Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 41, 1571-1584. Li, S.P., Zhang, G.H., Zeng, Q., Huang, Z.G., Wang, Y.T., Dong, T.T., Tsim, K.W., 2006b, Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 13, 428-433. Liu, Z., Li, P., Zhao, D., Tang, H., Guo, J., 2010, Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Behav Brain Funct 6, 61. Lo, H.C., Tu, S.T., Lin, K.C., Lin, S.C., 2004, The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sci 74, 2897-2908. Molina PE. Endocrine physiology. 2nd ed., P.E. Molina (ed.), The McGraw-Hill company, New York, NY, USA, pp. 157-158, 2007. Niu, Y.J., Tao, R.Y., Liu, Q., Tian, J.Y., Ye, F., Zhu, P., Zhu, H.B., 2010, Improvement on lipid metabolic disorder by 3''-deoxyadenosine in high-fat-diet-induced fatty mice. Am J Chin Med 38, 1065-1075. Onderdonk, A.B., Cisneros, R.L., Hinkson, P., Ostroff, G., 1992, Anti-infective effect of poly-beta 1-6-glucotriosyl-beta 1-3-glucopyranose glucan in vivo. Infect Immun 60, 1642-1647. Park, B.T., Na, K.H., Jung, E.C., Park, J.W., Kim, H.H., 2009a, Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean J Physiol Pharmacol 13, 49-54. Park, S.E., Yoo, H.S., Jin, C.Y., Hong, S.H., Lee, Y.W., Kim, B.W., Lee, S.H., Kim, W.J., Cho, C.K., Choi, Y.H., 2009b, Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem Toxicol 47, 1667-1675. Qi, W., Yan, Y.B., Lei, W., Wu, Z.X., Zhang, Y., Liu, D., Shi, L., Cao, P.C., Liu, N., 2011, Prevention of disuse osteoporosis in rats by Cordyceps sinensis extract. Osteoporos Int. Rosowsky, A., Lazarus, H., Yamashita, A., 1976, Nucleosides. 1. 9-(3''-Alkyl-3''-deoxy-beta-D-ribofuranosyl)adenines as lipophilic analogues of cordycepin. Synthesis and preliminary biological studies. J Med Chem 19, 1265-1270. Reaven, G.M., 1988, Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595-1607. Ren, J.M., Li, P.M., Zhang, W.R., Sweet, L.J., Cline, G., Shulman, G.I., Livingston, J.N., Goldstein, B.J., 1998, Transgenic mice deficient in the LAR protein-tyrosine phosphatase exhibit profound defects in glucose homeostasis. Diabetes 47, 493-497. Rondinone, C.M., Wang, L.M., Lonnroth, P., Wesslau, C., Pierce, J.H., Smith, U., 1997, Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 94, 4171-4175. Ryle, C., Donaghy, M., 1995, Non-enzymatic glycation of peripheral nerve proteins in human diabetics. J Neurol Sci 129, 62-68. Shen.M., Fuh, M.M., Wu, D.A., Chen, Y.D., Reaven, G.M., 1988, Resistance to insulin-stimulated-glucose uptake in patients with hypertension. J Clin Endocrinol Metab 66, 580-583. Shepherd, P.R., Gnudi, L., Tozzo, E., Yang, H., Leach, F., Kahn, B.B., 1993, Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268, 22243-22246. Shepherd, P.R., Kahn, B.B., 1999, Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med 341, 248-257. Shin, S., Kwon, J., Lee, S., Kong, H., Lee, C.K., Cho, K., Ha, N.J., Kim, K., 2010, Immunostimulatory Effects of Cordyceps militaris on macrophages through the enhanced production of cytokines via the activation of NF-kappaB. Immune Netw 10, 55-63. Shin, S., Moon, S., Park, Y., Kwon, J., Lee, S., Lee, C.K., Cho, K., Ha, N.J., Kim, K., 2009, Role of Cordycepin and Adenosine on the Phenotypic Switch of Macrophages via Induced Anti-inflammatory Cytokines. Immune Netw 9, 255-264. Tang, J., Tian, D., Liu, G., 2010, Immunosuppressive effect of Cordyceps CS-4 on human monocyte-derived dendritic cells in vitro. Am J Chin Med 38, 961-972. Tozzo, E., Gnudi, L., Kahn, B.B., 1997, Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. Endocrinology 138, 1604-1611. Watanabe, R.M., Black, M.H., Xiang, A.H., Allayee, H., Lawrence, J.M., Buchanan, T.A., 2007, Genetics of gestational diabetes mellitus and type 2 diabetes. Diabetes Care 30 Suppl 2, S134-140. Wild, S., Roglic, G., Green, A., Sicree, R., King, H., 2004, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047-1053. Yamaguchi, Y., Kagota, S., Nakamura, K., Shinozuka, K., Kunitomo, M., 2000, Inhibitory effects of water extracts from fruiting bodies of cultured Cordyceps sinensis on raised serum lipid peroxide levels and aortic cholesterol deposition in atherosclerotic mice. Phytother Res 14, 650-652. Zhang, G., Huang, Y., Bian, Y., Wong, J.H., Ng, T.B., Wang, H., 2006, Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl Microbiol Biotechnol 72, 1152-1156. Zhang, X., Liu, Y.K., Shen, W., Shen, D.M., 2004, Dynamical influence of Cordyceps sinensis on the activity of hepatic insulinase of experimental liver cirrhosis. Hepatobiliary Pancreat Dis Int 3, 99-101. Zhao, C.S., Yin, W.T., Wang, J.Y., Zhang, Y., Yu, H., Cooper, R., Smidt, C., Zhu, J.S., 2002, CordyMax Cs-4 improves glucose metabolism and increases insulin sensitivity in normal rats. J Altern Complement Med 8, 309-314.
摘要: 
近代研究認為新陳代謝症候群與糖尿病息息相關,學者欲研發藥品或萃取天然成分來改善新陳代謝症候群,進而控制糖尿病情,甚至達到預防的作用。文獻指出,冬蟲夏草含有多種活性成分,可以有效降低膽固醇濃度,減少心血管疾病的發生率,並且增加葡萄糖轉運蛋白的數量,具有穩定血糖作用。因此,本研究將冬蟲夏草成分加入大白鼠飼料中,以及作為大白鼠飲水,另外將以直接管餵方式給予大白鼠冬蟲夏草液,然後再以口服葡萄糖耐受性試驗觀察血糖控制能力,並且測量血液膽固醇和三酸甘油酯含量。此外,也使用活體胰臟灌流技術來觀察其對胰臟分泌胰島素之影響。實驗數據發現,以冬蟲夏草作為飲水,可顯著提高大鼠的血糖控制能力,亦可對膽固醇有顯著降低的效果。在飼料中添加冬蟲夏草成分,對於大鼠的血糖控制能力則無顯著影響,不過可以降低血中膽固醇含量,三酸甘油酯顯示會依劑量提高而有降低趨勢。每日一次管餵冬蟲夏草成分,更能夠顯著提升大鼠的血糖控制能力,使上升的血糖值較快回復穩定,餵予最高劑量的大鼠,其膽固醇及三酸甘油酯數值皆顯著較對照組要低。在活體胰臟灌流的結果中顯示,任一處理並沒有顯著提升大白鼠胰臟胰島素對葡萄糖刺激的分泌量。由上述的實驗結果顯示,冬蟲夏草控制血糖的作用可能是藉由影響身體組織對葡萄糖的利用效率,達到穩定血糖的效果,也能降低體內膽固醇含量,可能可以減少心血管疾病的發生率。

The metabolic syndrome is a cluster of risk factors including impaired glucose tolerance, hyperlipidemia and hypertension which are also relevant for the development of Type 2 diabetes and cardiovascular diseases. Cordyceps is a fungus that has been used for various pharmacologic and metabolic purposes. We investigated the effects of Cordyceps sinensis (CS) on blood glucose, cholesterol, and triglyceride in rats. By using rat pancreatic perfusion technique to observe the effects of Cordyceps sinensis on insulin levels. We found that CS could improve the glucose tolerance in oral glucose tolerance test (OGTT), but there was no significant increase in 10 mM glucose-induced insulin secretion. In addition, CS also significantly lowered the cholesterol concentration in blood. These results suggested that Cordycpes sisnensis may had potential beneficial effects on glucose utilization with less insulin secretion. Furthermore, CS may prevent hypercholesterolemia in rats.
URI: http://hdl.handle.net/11455/13071
其他識別: U0005-2806201213460100
Appears in Collections:獸醫學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.