Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/13072
標題: | 數值精確度指標於平地水筒模式上之研究 The Study of Numerical Characteristics of Accuracy in Diffusive Wave Model |
作者: | 劉昭宏 Liu, Chao-Hung |
關鍵字: | diffusive wave model;平地水筒模式;finite difference method;accuracy;consistency;stability;convegance;有限差分法;精確度;一致性;穩定性;收斂性 | 出版社: | 土木工程學系 | 摘要: | 本研究之主要目的為是以平地水筒模式應用普里斯曼(Preissmann) 之四點非隱性 有限差分法,在不同控制參數變化影響之下,探討此模式 精確度指標下的參數範圍。以 數值方法求解變量流偏微分方程式時,其 一致性(consistency)、穩定性(stability)及收斂性(convergence )為模式精確度的指標。在數值一致性的分析上,利用泰勒級數 展開式 來探討模式之一致性;在數值穩定性的分析上,以線性理論分析法展開對 模式的 穩定性分析,利用馮紐曼(Von Neumann)分析法,藉由振幅變 形參數相對於空間消散參 數和可蘭數間之關係,尋找模式參數的穩定區 間;在數值收斂性的分析上,亦利用傅利 葉分析法,藉由衰減收斂參數 和轉換收斂參數,相對於空間加權因子和時間加權因子間 的關係,尋找 此模式的收斂區間。研究結果顯示,此模式可滿足數值一致性,且可同時 滿足理論分析與西螺試驗區之實際流域分析上之數值穩定性與數值收斂性 的最佳需求。 The major purposes of this study discuss the parameter range of the characteristics of accuracy on the condition of different control parameter with Preissmann Implicit Four Point Linear Finite Difference Method in Diffusive Wave Model. With Numerical method solving partial difference equations, the characteristics of accuracy is consistency, stability and convergence. On the numerical analysis of consistency, discuss it with Tayler's Series Expansion. On the numerical analysis of stability, find stable region of the model by amplitude transformation parameter respect of spatial resolution parameter and Curant number with Von Neumann Linear Analysis. On the numerical analysis of convergence, this method find convergent region of the model by attenuation convergence ratio and translation convergence ratio respect of spatial weighting factor and time weighting factor with Fourier Series Analysis. The result of this study shows that this model should be sufficient for best range of numerical consistency, stability and convergence on the theoretical analysis process on the analysis process of the actual Si-Lo basin. |
URI: | http://hdl.handle.net/11455/13072 |
Appears in Collections: | 土木工程學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.