Please use this identifier to cite or link to this item:
標題: 台灣家禽流行性感冒病毒之特性與分子診斷
Molecular diagnostic and Characterization of avian influenza viruses in Taiwan
作者: 李敏旭
Lee, Ming-Shiuh
關鍵字: avian influenza virus;家禽流行性感冒病毒
出版社: 獸醫學系暨研究所
引用: 呂榮修。1988。家禽流行性感冒之病情與病毒分離。七十八年度台灣省農林廳畜產試驗評議會試驗研究報告書。75-83。 陳志豪、謝快樂。1989。台灣地區家禽流行性感冒之研究(Ⅱ)病原性及病理學之研究。台灣省畜牧獸醫學會會報。54:93-106。 Ada, G.L., Jones, P.D., 1986. The immune response to influenza infection. Current Topics in Microbiology and Immunology 128:1-54. Air, G.M., 1981., Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. Proc. Natl. Acad. Sci. USA 78, 7639–7643. Alexander, D. J. 1995., The epidemiology and control of avian influenza and Newcastle disease. J. Comp. Pathol. 112, 105-126. Alexander, D. J., Lister, S. A., Johnson, M. J., Randall, C. J., and Thomas, P. J., 1993. An outbreak of highly pathogenic avian influenza in turkeys in Great Britain in 1991. Vet. Rec. 132:535–536. Alexander, D. J., Parsons, G., and Manvell, R. J., 1986. Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail. Avian Pathol. 15:647–662. Alexander, D.J., 1982. Avian influenza-recent developments. Veterinary .Bulletin 52:341-359. Alexander, D.J., 1986. Avian influrenza-historical aspects. Proc.2nd int. Symp.Avian influenza,Athens,Georgia,USA,p.4-13. Allan, W.H., 1981. Diagnostic procedures-response. Proc.1st.Int.Symp.Avian Influenza,Beltville,Maryland,USA,167-171. Altmuller, A., Fitch, W.M., and Scholtissek, C., 1989. Biological and genetic evolution of the nucleoprotein gene of human influenza A viruses. Journal of General Virology 70:2111-2119. Altmuller, A., Fitch,W.M., Scholtissek, C., 1989. Biological and genetic evolution of the nucleoprotein gene of human influenza A viruses. J. Gen. Virol. 70, 2111–2119. Altschul, S.F.,Gish,W., Miller, W.,Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J Mol Biol. 215(3):403-10. Amonsin, A., Songserm, T., Chutinimitkul, S., Jam-On. R., Sae-Heng, N., Pariyothorn, N., Payungporn, S., Theamboonlers, A., Poovorawan, Y., 2007. Genetic analysis of influenza A virus (H5N1) derived from domestic cat and dog in Thailand. Arch Virol. 52(10):1925-33. Arras, M., P. Autenried, A. Rettich, D. Spaeni, and T. Rulicke. 2001. Optimization of intraperitoneal injection anesthesia in mice: drugs, dosages, adverse effects, and anesthesia depth. Comp. Med. 51:443–456. Atmar, R.L., Baxter, B.D., Dominguez, E.A., Taber, L.H., 1996. Comparison of reverse transcription-RT-PCR with tissue culture and other rapid diagnostic assays for detection of type A influenza virus. J. Clin. Microbiol. 34, 2604–2606. Austin, F. J., and Webster, R.G., 1986. Antigenic mapping of an avian H1 influenza virus haemagglutinin and interrelationships of H1 viruses from humans, pigs and birds. J. Gen. Virol. 67:983–992. Baigent, S. J., and McCauley, J. W., 2001. Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res. 79, 177-185. Banbura, M.W., Kawaoka, Y., Thomas, T.L., and Webster, R.G., 1991. Reassortants with equine 1 (H7N7) influenza virus hemagglutinin in an avian influenza virus genetic background are pathogenic in chickens. Virology 184:469-471. Banks, J., Speidel, E., Alexander, D.J., 1998. Characterisation of an avian influenza A virus isolated from a human-is an intermediate host necessary for the emergence of pandemic influenza viruses?.Archives of Virology 143:781-787. Bean, W. J., Cox, N. J., and Kendal, A. P., 1980. Recombination of human influenza A viruses in nature. Nature (London) 284:638–640. Beard, C.W., 1989a. Influenza. In: H.G. Purchase, L.H. Arp, S.B. Hitchner, C.H. Domermuth, J.E. Pearson (Eds.), A Laboratory Manual for the Isolation and Identification of Avian Pathogens, American Association of Avian Pathologists, College Station, TX, pp. 110–112. Beard, C.W., 1989b. Serological procedures. In: H.G. Purchase, L.H. Arp, S.B. Hitchner, C.H. Domermuth, J.E. Pearson (Eds.), A Laboratory Manual for the Isolation and Identification of Avian Pathogens, American Association of Avian Pathologists, College Station, TX, pp. 192–200. Beare, A.S., 1982. Basic and applied influenza research.CRC press. Beare, A.S., Webster, R.G., 1991. Replication of avian influenza viruses in humans. Arch Virol. 119(1-2):37-42 Berg, M., Englund, L., Abusugra, I.A., Klingeborn, B., Linne, T., 1990. Close relationship between mink influenza (H10N4) and concomitantly circulating avian influenza viruses.Archives of Virology 1990;113(1-2):61-71. Bos, J.L., 1989. Ras oncogenes in human cancer:a review. Cancer Research 49:4682-4689. Bosch, F.X., Garten, W., Klenk, H.D., Rott, R., 1981. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 113, 725–735. Bosch, F.X., Orlich, M., Klenk, H.D., Rott, R., 1979. The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95, 197–207. Bright, R.A., Cho, D.S., Rowe, T., Katz, J.M., 2003. Mechanisms of pathogenicity of influenza A (H5N1) viruses in mice. Avian Dis. 47, 1131–1134. Brown, I.H., Harris, P.A., McCauley, J.W., Alexander, D.J., 1998. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. Journal of General Virology ;79 ( Pt 12):2947-55. Butler, D., 2006. Thai dogs carry bird-flu virus, but will they spread it? Nature. 439(7078):773. Capua, I., Marangon, S., 2007. The use of vaccination to combat multiple introductions of Notifiable Avian Influenza viruses of the H5 and H7 subtypes between 2000 and 2006 in Italy. Vaccine. 28;25(27):4987-95. Capua, I., Marangon, S., dalla Pozza, M., Terregino, C., Cattoli, G., 2003. Avian influenza in Italy 1997-2001. Avian Dis. 47(3 Suppl):839-43. Caton, A. J., Brownlee, G. G., Yewdell, J. W., and Gerhard, W., 1982. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31, 417-427. Center for Disease Control and Prevention (CDC)., 2006. Avian Influenza: Current Situation. Navigation for the CDC Avian Flu Website, May 17, 2006. Centers for Disease Control and Prevention (CDC)., 2005. Update: Influenza activity--United States and worldwide, 2004-05 season. MMWR Morb. Mortal. Wkly. Rep. 54, 631-634. Chanock, R.H., and Cockburn, W.C., 1972. A revised system of influenza virus nomenclature. Virology 47:854-856. Chen, H., Deng, G., Li, Z., Tian, G., Jiao, P., Zhang, L., Liu, Z., Webster, R.G., Yu, K., 2004. The evolution of H5N1 influenza viruses in ducks in southern China. PNAS 101, 10452–10457. Chen, H., Smith, G.J.D., Li, K.S.,Wang, J., Fan, X.H., Rayner, J.M., Vijaykrishna, D., Zhang, J.X., Zhang, L.J., Guo, C.T., Cheung, C.L., Xu, K.M., Duan, L., Huang, K., Qin, K., Leung, Y.H.C., Wu, W.L., Lu, H.R., Chen, Y., Xia, N.S., Naipospos, T.S.P., Yuen, K.Y., Hassan, S.S., Bahri, S., Nguyen, T.D., Webster, R.G., Peiris, J.S.M., Yuan, Y., 2006. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. PNAS 103, 2845–2850. Chen, H., Smith, G.J.D., Zhang, S.Y., Qin, K., Wang, J., Li, K.S., Webster, R.G., Peiris, J.S.M., Guan, Y., 2005. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436, 191–192. Cherian, T., Bobo, L., Steinhoff, M.C., Karron, R.A., Yolken, R.H., 1994. Use of PCR-enzyme immunoassay for identification of influenza A virus matrix RNA in clinical samples negative for cultivable virus. J. Clin.Microbiol. 32, 623–628. Cheung, C., Poon, L., Lau, A., Luk, W., Lau, Y., Shortridge, K., Gordon, S., Guan, Y., Peiris, J., 2002. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) virus: a mechanism for the unusual severity of human disease? Lancet 360, 1831–1837. Chin, P. S., Hoffmann, E., Webby, R., Webster, R. G., Guan, Y., Peiris, M., and Shortridge, K. F., 2002. Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. J. Virol. 76, 507-516. Choi, Y. K., Seo, S. H., Kim, J. A., Webby, R. J., and Webster, R. G., 2005. Avian influenza viruses in Korean live poultry markets and their pathogenic potential. Virology 332, 529-537. Claas, E.C., Osterhaus, A.D., van Beek, R., De Jong, J.C., Rimmelzwaan, G.F., Senne, D.A., Krauss, S., Shortridge, K.F., Webster, R.G., 1998. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477. Claas, E.C., van Milaan, A.J., Sprenger, M.J., Ruiten-Stuiver, M., Arron, G.I., Rothbarth, P.H., Masurel, N., 1993. Prospective application of reverse transcriptase polymerase chain reaction for diagnosing influenza infections in respiratory samples from a children’s hospital. J. Clin. Microbiol. 31, 2218–2221. Donis, R. O., Bean, W. J., Kawaoka, Y., and Webster, R. G., 1989. Distinct lineages of influenza virus H4 hemagglutinin genes in different regions of the world. Virology 169:408–417. Duan, L., Campitelli, L., Fan, X.H., Leung, Y.H., Vijaykrishna. D., Zhang, J.X., Donatelli. I., Delogu, M., Li, K.S., Foni, E., Chiapponi, C., Wu, W.L., Kai, H., Webster, R.G., Shortridge, K.F., Peiris, J.S., Smith, G.J., Chen, H., Guan, Y., 2007. Characterization of low-pathogenic H5 subtype influenza viruses from Eurasia: implications for the origin of highly pathogenic H5N1 viruses. J Virol. 81(14):7529-39. Dybing, J.K., Schultz-Cherry, S., Swayne, D.E., Suarez, D.L., 2000. Distinct pathogenesis of Hong Kong-origin H5N1 viruses in mice compared to that of other highly pathogenic H5 avian influenza viruses. J. Virol. 74, 1443–1450. Easterday, B.C., Hinshaw, V.S., Halvorson, D.A., 1997. Influenz. In: B.W. Calnek, H.J. Barnes, C.W. Beard, L.R. McDougald, Y.M. Saif (Eds.), Disease of Poultry, 10th ed., Iowa State University Press, Ames, IA, pp. 583–606. Endo, A., Pecoraro, R., Sugita, S., Nerome, K., 1992. Evolutionary pattern of the H 3 haemagglutinin of equine influenza viruses: multiple evolutionary lineages and frozen replication. Archives of Virology;123(1-2):73-87. Englund, L., Hard, A.F., Segerstad, C., 1998. Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison).Archives of Virology ;143(4):653-66. Erlich, H.A., Gelfand, D., and Sninsky, J.J., 1991. Recent advances in the polymerase chain reaction. Science 252:1643-1651. Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package), version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, Washington. Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G. F., Olsen, B., and Osterhaus, A. D., 2005. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79, 2814-2822. Gao, P., Watanabe, S., Ito, T., Goto, H., Wells, K., McGregor, M., Cooley, A.J., Kawaoka, Y., 1999. Biological heterogenecity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J. Virol. 73, 3184–3189. Garcia, M., Crawford, J.M., Latimer, J.W., Rivera-Cruz, E., Perdue, M.L., 1996. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J. Gen. Virol. 77 (Pt 7), 1493–1504. Geisler, B., Seidel, W., Herrmann, B., and Dohner, L., 1986. Differences of nucleoproteins of human and avian influenza A virus strains shown by polyacrylamide gel electrophoresis and by the peptide mapping technique. Archives of virology 90:289-299. Geraci, J.R., StAubin, D.J., Barker, I.K., Webster, R.G., Hinshaw, V.S., Bean, W.J., Ruhnke, H.L., Prescott, J.H., Early, G., Baker, A.S., Madoff, S., Schooley, R.T., 1982. Mass mortality of harbor seals: pneumonia associated with influenza A virus. Science;215 (4536):1129-31. Godley, L., Pfeifer, J., Steinhauer, D., Ely, B., Shaw, G., Kaufmann, R., Suchanek, E., Pabo, C., Skehel ,J.J., Wiley, D.C., and Wharton, S., 1992. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68:635-645. Gorman, O.T., Bean, W.J., Kawaoka, Y., and Webster, R.G., 1990. Evolution of the nucleoprotein gene of influenza A virus. Journal of Virology 64(4):1487-1497. Gorman, O.T., Bean, W.J., Kawaoka, Y., Donatelli, I., Guo, Y., and Webste, R.G., 1991. Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses. J. Virol. 65:3704–3714. Guan, Y., Shortridge, K.F., Krauss, S., Li, P.H., Kawaoka, Y., and Webster, R.G., 1996. Emergence of avian H1N1 influenza viruses in pigs in china. Journal of Virology 70(11):8041-8046. Guo, Y., Wang, M., Kawaoka, Y., Gorman, O., Ito, T., Saito, T., Webster, R.G., 1992. Characterization of a new avian-like influenza A virus from horses in China. Virology ;188(1):245-55. Hatta, M., Gao, P., Halfmann, P., Kawaoka, Y., 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842. Hinshaw, V.S., and Webster, R.G., 1979.Waterborne transmission of influenza zA virus? Intervirology 11:66-68. Hinshaw, V.S., Bean, W.J., Geraci, J., Fiorelli, P., Early, G., Webster, R.G., 1986. Characterization of two influenza A viruses from a pilot whale. Journal of Virology ;58(2):655-6. Hoffmann, E., Stech, J., Guan, Y.,Webster, R.G., Perez, D.R., 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146, 2275–2289. Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., Chin, P.S., Peiris, M., Shortridge, K.F., Webster, R.G., 2000. Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1. J. Virol. 74, 6309–6315. Hofstad, M.S., Barnes, H.J., Calnek, B.W., Reid, W.M., Yoder, H.W., 1984. Avian influenza Enghth etifion Disease of Poultry .482-495. Horimoto, T., and Kawaoka, Y., 1998. A possible mechanism for selection of virulent avian influenza A viruses in 14-day-old embryonated eggs. J. Vet. Med. Sci. 60, 273-275. Horimoto, T., Kawaoka, Y., 1994. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. Journal of Virology 68(5):3120-8 . Horimoto, T., Kawaoka, Y., 1995. Direct reverse transcriptase RT-PCR to determine virulence potential of influenza A viruses in birds. J. Clin. Microbiol. 33, 748–751. Horimoto, T., Kawaoka, Y., 2001. Pandemic threat posed by avian influenza A viruses. Clin. Microbiol. Rev. 14, 129–149. Horimoto, T., Rivera, E., Pearson, J., Senne, D., Krauss, S., Kawaoka, Y., Webster, R.G., 1995. Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 213(1):223-30. Huang, C.C., Lin, Y.L., Huang, T.S., Tu,W.J., Lee, S.H., Jong, M.H., Lin, S.Y., 2001. Molecular characterization of foot-and-mouth virus isolated from ruminants in Taiwan in 1999–2000. Vet. Microbiol. 81, 193–205. Huang, R.T.C., Rott, R., and Klenk, H.D., 1981. Influenza viruses cause hemolysis and fusion of cells. Virology 110:243-247. Inkster, M.D., Hinshaw, V.S., Schulze, I.T., 1993. The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. Journal of Virology 67(12):7436-43. Ito, T., Okazaki, K., Kawaoka, Y., Takada, A., Webster, R. G., and Kida, H., 1995. Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch. Virol. 140:1163–1172. Kanegae, Y., Sugita, S., Shortridge, K.F., Yoshioka, Y., Nerome, K., 1994. Origin and evolutionary pathways of the H1 hemagglutinin gene of avian, swine and human influenza viruses:cocirculation of two distinct lineages of swine virus.Archives of Virology ;134(1-2):17-28. Katz, J.M., Lu, X., Tumpey, T.M., Smith, C.B., Shaw, M.W., Subbarao, K., 2000. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J. Virol. 74, 10807–10810. Kaverin, N. V., Rudneva, I. A., Ilyushina, N. A., Lipatov, A. S., Krauss, S., and Webster, R. G., 2004. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants.J. Virol. 78, 240-249. Kaverin, N. V., Rudneva, I. A., Ilyushina, N. A., Varich, N. L., Lipatov, A. S., Smirnov, Y. A., Govorkova, E. A., Gitelman, A. K., Lvov, D. K., and Webster, R. G., 2002. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J. Gen. Virol. 83, 2497-2505. Kawaoka Y, Chambers TM, Sladen WL, Webster RG., 1988. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology. 163(1):247-50 Kawaoka, Y., Naeve, C.W., Webster, R.G., 1984. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139, 303–316. Kawaoka, Y., Nestorowicz, A., Alexander, D. J. and Webster, R. G., 1987. Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain. Virology 158:218–227. Kawaoka, Y., Yamnikova, S., Chambers, T.M., Lvov, D.K., Webster, R.G., 1990. Molecular characterization of a new hemagglutinin,subtype H14, of influenza A virus. Virology 179(2):759-67. Keawcharoen, J., Oraveerakul, K., Kuiken, T., Fouchier, R.A., Amonsin, A., Payungporn, S., Noppornpanth, S., Wattanodorn, S., Theambooniers, A., Tantilertcharoen, R., Pattanarangsan, R., Arya, N., Ratanakorn, P., Osterhaus, D.M., Poovorawan, Y., 2004. Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis. 10(12):2189-91. Kendal, A.p., Dowdle, W.R., and Noble, G.R., 1985. Influenza virus. Manual of clinical microbiology. American society for microbiology 4th. Washington,D.C. Kida, H., Ito, T., Yasuda, J., Shimizu, Y., Itakura, C., 1994. Potential for transmission of avian influenza viruses to pigs. Journal of General Virology 75:2183-2188. Kida, H., Kawaoka,Y,. Naeve, C.W., and Webster, R.G., 1987. Antigenic and genetic conservation of H3 influenza in wild ducks. Virology 159:109–119. Kida, H., Yanagawa, R., and Matsuoka, Y., 1980. Duck influenza lacking evidence of disease signs and immune response. Infect. Immun. 30:547–553. Kilbourne, E.D., 1987. Influenza. Plenum medical book company. New York and London. Kim, J.A., Cho, S.H., Kim, H.S., Seo, S.H., 2006. H9N2 influenza viruses isolated from poultry in Korean live bird markets continuously evolve and cause the severe clinical signs in layers. Vet Microbiol. 118(3-4):169-76. Kishida, N., Sakoda, Y., Eto, M., Sunaga, Y., Kida, H., 2004. Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch Virol. 149(11):2095-104. Klenk, H.D., Rott, R., Orlich, M., 1977. Futher studies on the activation of influenza virus by proteolytic cleavage of the haemagglutinin. Journal of General Virology 68:426-439. Koopmans, M., Wilbrink, B., Conyn, M., Natrop, G., van der Nat, H., Vennema, H., Meijer, A., van Steenbergen, J., Fouchier, R., Osterhaus, A., Bosman, A., 2004. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363(9409):587-93. Kuiken, T., Rimmelzwaan, G., van Riel, D., van Amerongen, G., Baars, M., Fouchier, R., Osterhaus, A., 2004. Avian H5N1 influenza in cats. Science. 306(5694):241. Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150–163. Lamb, R. A., and Krug, R. M., 1996. Orthomyxoviridae: the viruses and their replication. In: Fieldds, B. N., Knipe, D. M., Howley, P. M., Chanock, R. M., Melnick, J. L., Momath, T. P., and Roizman, B. (Eds.), Fundamental Virology, 3rd edn (pp. 605-648). Lee, C.W., Senne, D.A., Suarez, D.L., 2004. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol. 78(15):8372-81. Lee, M.S., Chang, P.C., Shien, J.H., Cheng, M.C., Chen, C.L., Shieh, H.K., 2006. Genetic and pathogenic characterization of H6N1 avian influenza viruses isolated in Taiwan between 1972 and 2005. Avian Dis. 50(4):561-71. Lee, M.S., Chang, P.C., Shien, J.H., Cheng, M.C., Shieh, H.K., 2001. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J. Virol. Methods 97, 13–22. Lee, M.S., Deng, M.C., Lin, Y.J., Chang, C.Y., Shieh, H.K., Shiau, J.Z., Huang, C.C., 2007. Characterization of an H5N1 avian influenza virus from Taiwan. Vet Microbiol. 124(3-4):193-201. Li, K. S., Xu, K. M., Peiris, J. S., Poon, L. L. Yu, K. Z., Yuen, K. Y., Shortridge, K. F., Webster, R. G., and Guan, Y., 2003. Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans? J. Virol. 77, 6988–6994. Li, K.S., Guan, Y., Wang, J., Smith, G.J.D., Xu, K.M., Duan, L., Rahardjo, A.P., Puthavathana, P., Buranathai, C., Nguyen, T.D., Estoepangestie, A.T.S., Chaisingh, A., Auewarakul, P., Long, H.T., Hanh, N.T.H., Webby, R.J., Poon, L.L.M., Chen, H., Shortridge, K.F., Yuen, K.Y., Webster, R.G., Peiris, J.S.M., 2004. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213. Lin, Y. P., Shu, L. L., Wright, S., Bean, W. J., Sharp, G. B., Shortridge, K. F., and Webster, R. G., 1994. Analysis of the influenza virus gene pool of avian species from southern China. Virology 198, 557-566. Lu, X.H., Tumpey, T.M., Morken, T., Zaki, S.R., Cox, N.J., Katz, J.M., 1999. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J. Virol. 73, 5903–5911. Lu, Y.S., Sugimura, T., Shieh, H.K., Lee, Y.L., and Jong, M.H., 1985. Isolation and identification of an influenza A virus in duck in Taiwan .Provincial Research Institue for Animal Health. 21:91-104. Maas, R., Tacken, M., Ruuls, L., Koch, G., van Rooij, E., Stockhofe-Zurwieden, N., 2007. Avian influenza (H5N1) susceptibility and receptors in dogs. Emerg Infect Dis. 13(8):1219-21. Mase, M., Tanimura, N., Imada, T., Okamatsu, M., Tsukam, oto K., Yamaguchi, S., 2006. Recent H5N1 avian influenza A virus increases rapidly in virulence to mice after a single passage in mice. J Gen Virol. 87(Pt 12):3655-9. Matrosovich, M., Zhou, N., Kawaoka, Y., Webster, R., 1999. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 73, 1146–1155. McFerran, J.B., McNulty, M.S., and Curran, W.L., 1978. Diagnosis of avian viral diseases by electron microscopy. American Journal of Veterinary Research. 39:505-508. Mcgeoch, D.J., Davison, A.J., and Neil, J.C., 1988. Review Article-Some highlights of animal virus research in 1987. Journal of General Virology69:2419-2440. MMWR., 1997. Isolation of avian influenza A(H5N1) viruses from humans--Hong Kong, May-December 1997. Morb Mortal Wkly Rep 46(50):1204-7 . Mo, I. P., Brugh, M. O., Fletcher, J., Rowland, G. N., and Swayne, D. E., 1997. Comparative pathology of chickens experimentally inoculated with avian influenza viruses of low and high pathogenicity. Avian Dis. 41:125–136. Morley, P.S., Bogdan, J.R., Townsend, H.G.G., Haines, D.M., 1995. The effect of changing single radial hemolysis assay method when quantifying influenza A antibodies in serum. Veterinary Microbiology 44:101-110. Morton, G., 1973. The pandemic influenza of 1918,Canadian Nurse 69:25-27. Murphy, B.R., Hinshaw, V. S., Sly, D. L., London, W. T. Hosier, N. T. Wood, F. T. Webster, R.G. and Chanock, R.M., 1982. Virulence of avian influenza A viruses for squirrel monkeys. Infect. Immun. 37:1119–1126. Murphy, P., Roberts, Z.M., Waner, J.L., 1996. Differential diagnoses of influenza A virus, influenza B virus, and respiratory syncytial virus infections by direct immunofluorescence using mixtures of monoclonal antibodies of different isotypes. J Clin Microbiol. 34(7):1798-800. Nestorowicz, A., Kawaoka, Y., Bean, W., and Webster, R.G., 1987. Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza viruses:role of passerine birds in maintenance or transmission? Virology 160:411-418. Nicholas,R.A.J., and Thorton,D.H., 1986. The use of the enzyme linked immunosorbent assay in detecting antibody to avian viruses:a review. Veterinary Bulletin 56:337-343. Normile, D., 2006. Avian influenza Wild birds only partly to blame in spreading H5N1. Science 312, 1451. Ohuchi, M., Orlich, M., Ohuchi, R., Simpson, B.J., Garten, W., Klenk, H.D., and Rott, R., 1989. Mutations at the cleavage site of the hemagglutinin alter the pathogenicity of influenza virus A/Chick/Penn/83(H5N2). Virology 168:274-180. OIE manual., 2004. chapter 2.1.14: Highly pathognenic avian influenza.Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. OIE-World Organisation for Animal Health, 2005. Avian Influenza (NB: Version Adopted May 2005) (Chapter 2.1.12). OIE-World Organisation for Animal Health, 2006. Daily Update on Avian Influenza Situation in Birds. Most Recent Official Reports, May 18, 2006. Okamatsu, M., Saito, T., Yamamoto, Y., Mase, M., Tsuduku, S., Nakamura, K., Tsukamoto, K., Yamaguchi, S., 2007. Low pathogenicity H5N2 avian influenza outbreak in Japan during the 2005-2006. Vet Microbiol. 124(1-2):35-46. Palmer, D. F., Dowdle, W. R., Coleman, M. T., and Schild, G. C., 1975. Adyanced laboratpry techniques for influenza diagnosis. U. S. Dept. HealthEduc. Welf. Immun. Ser. Vol. 6. Center for Disease Control, Altlanta, GA. Pasick, J., Handel, K., Robinson, J., Copps, J., Ridd, D., Hills, K., Kehler, H., Cottam-Birt, C., Neufeld, J., Berhane, Y., Czub, S., 2005. Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J. Gen. Virol. 86, 727–731. Patterson, S., Gross, J., and Oxford, J.S., 1988. The intracellular distribution of influenza virus matrix protein and nucleoprotein in infected cells and their relationship to haemagglutinin in the plasma membrane. Journal of General Virology69:1859-1872. Perdue,M.L., Garcia,M., Beck,J., Brugh,M. and Swayne,D.E., 1996. An Arg-Lys insertion at the hemagglutinin cleavage site of an H5N2 avian influenza isolate. Virus Genes 12 (1), 77-84. Pinto, L.H., Holsinger, L.J., Lamb, R.A., 1992. Influenza virus M2 protein has ion channel activity. Cell.69(3):517-28. Proença-Módena, J. L., Izolete, S. M., and Eurico, A., 2007. H5N1 Avian Influenza Virus: An Overview. The Brazilian Journal of Infectious Diseases 2007;11(1):125-133. Reed, L.J., Muench, H., 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497. Reinhardt, U., Scholtissek, C., 1988. Comparison of the nucleoprotein genes of a chicken and a mink influenza A H 10 virus. Archives of Virology 103(1-2):139-45. Ro¨hm, C., Su¨ss, J., Pohle, V. and Webster, R. G., 1996. Different hemagglutinin cleavage site variants of H7N7 in an influenza outbreak in chickens in Leipzig, Germany. Virology 218:253–257. Rohm, C., Horimoto, T., Kawaoka, Y., Suss, J., Webster, R.G., 1995. Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology 209(2):664-70 . Röhm, C., Zhou, N. A., Su¨ss, J.C., Mackenzie, J., and Webster, R.G., 1996. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology 217:508–516. Rott, R., 1993. The pathogenic determinant of influenza virus. Veterinary Microbiology 33(1-4):303-10 . Ruigork, R.W.H., Hewat, E.A., and Wade, R.H., 1992. Low pH deforms the influenza virus envelope. Journal of General Virology. 73:995-998. Schafer, J.R., Kawaoka, Y., Bean, W.J., Suss, J., Senne, D., Webster, R.G., 1993. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 194(2):781-8 . Schafter, W., 1955. Vergleichende sero-immunologische Untersuchungen uber die Viren der Influenza and Klassichen Geflugelpest. Z.Nnaturforsch 10:81-91. Schild, G.C., Pereira, H.G., and Schettler, C.H., 1969. Neuraminidase in avian influenza A viruses antigenically related to that of human A0 and A1 subtype. Nature 222:1299-1301. Scholtissek, C., 1996. Molecular evolution of influenza viruses. Virus Genes 11(2-3):209-215. Scholtissek, C., Ludwig, S., and Fitch, W.M., 1993. Analysis of influenza A virus nucleoproteins for the assessment of molecular genetic mechanisms leading to new phylogenetic virus lineages. Archives of Virology 131:237-250. Scholtissek, S., Muller, K., Herzog, S., and Frese, K., 1988. Multiplication of influenza A viruses with cleavable and non-cleavable hemagglutinin in chick embryo membranes or organs,and cell cultures derived therefrom. Journal of General Virology 69:2155-2164. Schweiger, B., Lange, I., Heckler, R., Willers, H., Schreier, E., 1994. Rapid detection of influenza A neuraminidase subtypes by cDNA amplification coupled to a simple DNA enzyme immunoassay. Archives of Virology;139(3-4):439-44. Senne, D., Panigrahy, B., Kawaoka, Y., Pearson, J., Suss, J., Lipkind, M., Kida, H., Webster, R.G., 1996. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis. 40, 425–437. Seo, S.H., Hoffmann, E., Webster, R.G., 2002. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med. 8, 950–954. Seo, S.H., Hoffmann, E., Webster, R.G., 2004. The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses. Virus Res. 103, 107–113. Shimizu, H., McCarthy, C.A., Smaron, M.F., and Burns, J.C., 1993. Polymerase chain reaction for detection of measles virus in clinical samples. Journal of Clinical Microbiology 31:1034-1039. Shortridge, K.F., Zhou, N.N., Guan, Y., Gao, P., Ito, T., Kawaoka, Y., Kodihalli, S., Krauss, S., Markwell, D., Murti, K.G., Norwood, M., Senne, D., Sims, L., Takada, A., and Webster, R.G., 1998. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252:331-342. Shu, L.L., Bean, W.J., Webster, R.G., 1993. Analysis of the evolution and variation of the human influenza A virus nucleoprotein gene from 1933 to 1990. J. Virol. 67, 2723–2729. Spackman, E., Stallknecht, D.E., Slemons, R.D., Winker, K., Suarez, D.L., Scott, M., Swayne, D.E., 2005. Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation. Virus Res. 114(1-2):89-100. Stallknecht, D.E., Shane, S.M., Kearney, M.T., and Zwank, P.J., 1990. Effects of pH,temperature,and salinity on persistence of avian influenza viruses in water. Avian disease 34(2):412-8 . Steinhauer, D. A., 1999. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258:1–20. Steuler, H., Rohde, W., and Soholtissek, C., 1984. Sequence of neuraminidase gene of an avian influenza A virus (A/parrot/Ulster/73,H7N1). Zentlbt.Bakt.Hyg.A. 258(4):534. Stockton, J., Ellis, J.S., Saville, M., Clewley, J.P., Zambon, M.C., 1998. Multiplex RT-PCR for typing and subtyping influenza and respiratory syncytial viruses. J. Clin. Microbiol. 36, 2990–2995. Sturm-Ramirez, K.M., Ellis, T., Bousfield, B., Bissett, L., Dyrting, K., Rehg, J.E., Poon, L., Guan, Y., Peiris, M., Webster, R.G., 2004. Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J. Virol. 78, 4892–4901. Suarez, D. L., 2000. Evolution of avian influenza viruses. Vet. Microbiol. 74, 15-27. Suarez, D.L., Perdue, M.L., Cox, N., Rowe, T., Bender, C., Huang, J., Swayne, D.E., 1998. Comparisons of highly virulent H5N1 influenza A viruses isolated from humans and chickens from Hong Kong. J. Virol. 72, 6678–6688. Suarez, D.L., Senne, D.A., Banks, J., Brown, I.H., Essen, S.C., Lee, C.W., Manvell, R.J., Mathieu-Benson, C., Moreno, V., Pedersen, J.C., Panigrahy, B., Rojas, H., Spackman, E., Alexander, D.J., 2004. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg. Infect. Dis. 10, 693–699. Subbarao, E.K., London, W., Murphy, B.R., 1993. A single amino acid in the PB2 gene of influenza Avirus is a determinant of host range. J. Virol. 67, 1761–1764. Subbarao, K., Klimov, A.,
家禽流行性感冒病毒具有多血清亞型的特性使得診斷工作困難執行,更添加防疫的困難。血清亞型的區分使用血清學的方法,但面臨許多困擾,如標準血清抗體的取得,人員操作病毒的生物安全性問題,所以應發展以核酸等為基礎的方法來取代。病毒血清亞型由HA 和 NA二個主要抗原所決定,而抗原性與其基因序列密切相關,我們以各亞型之基因特異性來設計引子區別病毒亞型,已成功的應用在470株病毒的鑑定與亞型區分,其中並包括425株田間禽類流行性感冒病毒分離株及12株豬流行性感冒病毒分離株。這方法的適用性良好且具有快速、敏感及安全性等優點,若隨病毒的演化需修飾引子,以人工合成方式也相當容易,加上這種方式可以利用增幅出的產物進行序列分析,除可確認結果外更可分析病毒基因的演化,而聚合酶鏈反應技術的發展在自動溫控機器及酵素的發展下已經十分純熟,相當值得推廣這成果。
在本研究中包含2個出現在家禽場的H6N1及H5N2 病毒和一株H5N1病毒之分析。分析1972-2005年台灣家禽場常見的H6N1家禽流行性感冒病毒,自1997年後從台灣家禽場分離之H6N1病毒株與香港及中國大陸病毒株不同而呈現獨特分支,病原性的分析為低病原性病毒,但當與其他疾病混合感染時也會造成相當的損失。在NA基因的缺損特徵顯示病毒已適應在雞群,而有一些病毒株在未經先前的馴化即可在小白鼠身上複製,顯示這些病毒具有跨越物種造成哺乳動物感染的潛在危險性。而台灣目前仍為H5N1病毒非疫區,但在2003年由走私鴨分離得高病原性H5N1病毒,對於接種小白鼠呈現低病原特性,參酌先前研究者所歸納出可能對於哺乳動物有致害性的分子標記來分析,結果顯示這些分子標記並非個別的與病原性相關聯,可見分子標記並無法有效的區別出高、低病原性。另外在2003-2004年家禽場所感染的H5N2家禽流行性感冒病毒,病原性試驗及分子分析均屬低病原性特徵,分析病毒基因組成則是具有美洲病毒群的表面抗原及歐亞洲病毒群之內部結構的重組病毒,病毒演化的證據及病毒主要抗原與目前主要用來製造疫苗病毒株有高度相似性及相同特徵,顯示這並非自然產生之病毒株,推論應該來自於劣質疫苗所肇禍。在小白鼠試驗中未經馴化在小白鼠的病毒可從接種小白鼠的肺臟回收,對於哺乳類動物應有感染的潛在性。而大部份這些H5N2病毒株其內部基因與目前已適應在雞群之H6N1病毒株相似,若病毒在雞群中循環可能加速其適應在雞群並提高病毒複製力,將可能進一步跨越宿主障礙感染其它物種之動物。總之,不論高、低病原性病毒,如使病毒在雞群中循環適應來提高複製力,病毒的演化都將可能跨越宿主的障礙。

The wide variety of avian influenza subtypes make diagnosis and prevention of this disease difficult. The serotype diagnosis of influenza is relied on serology methods; however, due to the limited source of standard sera and bio-safety concern of handling avian influenza, it is necessary to develop nucleic acid based diagnosis methods. As the antigenicity is related to the nucleic acid sequences, we designed subtype-specific primers for hemagglutinin (HA) and neuraminidase (NA) genes, encoding the two major viral antigen proteins, and have successfully applied to the serotyping and distinguishing diagnosis of 470 isolates including 425 samples of field avian influenza and 12 cases of swine influenza. Such a polymerase chain reaction (PCR) method is time effective, highly sensitive, and safe for diagnosis; in the case of potential gene variations, the method can be easily adapted with supplement of appropriate primers. Furthermore, by means of sequence analysis of the resulting PCR products, the molecular evolution of influenza viruses can be further determined. Hence, application of our subtype-specific primers in PCR, the well established method, could facilitate the influenza diagnosis.
Three avian viruses including two viruses, H6N1 and H5N2, currently circulating in Taiwan and the H5N1 virus were characterized in this study. First, H6N1, collected during the period of 1972-2005 were analyzed; the result of phylogenetic analysis revealed that after year 1997 our local H6N1 viruses were grouped into a cluster separated from those isolated from Hong-Kong and Mainland China. Although it was classified as low pathogenic influenza viruses, in combination with other infections, the H6N1 virus caused a great economic loss. The NA genetic characteristics demonstrated that this virus has adapted to the local chicken population. There are some strains able to replicate in mice before adapted to mice, indicating a potential capability of cross species transmission. At present, Taiwan remains free of H5N1 bird flu cases; nevertheless, in 2003 the HPAI H5N1 virus was isolated from smuggling ducks. In mice models, inoculation of H5N1 did not pose a high pathogenicity. We analyzed the previously documented detriment molecular markers of mammals and results demonstrated no significant correlation between those molecular markers with the duck H5N1 virus pathogenicity. Moreover, we also characterised the low pathogenic H5N2 influenza viruses isolated from outbreaks during 2003-2004. Notably, the surface antigens of H5N2 viruses resemble those of American strains but the genes of viral proteins reside in the virus particles are closely related to those of Eurasia strains. Interestingly, the phylogenetic relationship coincides with vaccine origins, indicating the recombination of H5N2 circulating during 2003-2004 might be driven by a poor quality of vaccines. As describe previous paragraph, the mice were susceptible to un-adapted H5N2 virus and the resulting progeny viruses can be recovered from lungs of infected mice, it is very possible that such viruses are able to transmit to mammals. Despite the difference in surface antigenicity, H5N2 virus shares similar genetic properties with H6N1 virus and therefore circulating of H5N2 viruses in chickens might accelerate viral adaptation, increase the replication efficiency and lead to cross-species infection. Taken together, no matter high or low pathogenicity, once the viruses have adapted to the chicken population and result in increase of replication, the evolution of virus might make the cross-species infection possible.
其他識別: U0005-0401200809241900
Appears in Collections:獸醫學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.