Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13355
DC FieldValueLanguage
dc.contributor.advisor林建宏zh_TW
dc.contributor.advisorLin Chien-Hungen_US
dc.contributor.author林士平zh_TW
dc.contributor.authorLin, Shih-Pingen_US
dc.date2005zh_TW
dc.date.accessioned2014-06-06T06:50:41Z-
dc.date.available2014-06-06T06:50:41Z-
dc.identifier.urihttp://hdl.handle.net/11455/13355-
dc.description.abstract本研究主要在探討不同流動性混凝土之混凝土單位重 與配比參數-水固比 及粗、細骨材重量比 ,對於圍束混凝土行為之影響。共收集155支柱試體實驗資料,其中包括105支普通混凝土柱試體及50支高流動性混凝土柱試體(12支高工作度混凝土柱試體、23支自充填混凝土柱試體及15支輕質自充填混凝土柱試體),進行分析比較。研究結果顯示如下: 1. 在使用高流動性混凝土時,降低粗骨材使用比率,將造成試體勁度降低、延展性變差之情形,不利構造物結構行為。 2. 高流動性混凝土試體之應力-應變曲線,在上升段勁度及下降段斜率,均明顯受混凝土單位重 、粗細骨材重量比 及水固比 參數之影響。 3. 高工作度混凝土試體,所使用之粗骨材量較高,其桿件行為表現較佳。 4. 由收集之柱試體實驗資料,推導出適用於普通混凝土及高流動性混凝土之圍束混凝土之應力-應變模式。 5. 在反覆載重實驗中高工作度混凝土柱試體之延展性及能量吸收能力比普通混凝土試體佳。高工作度混凝土柱裂縫寬度較普通混凝土柱小。 6. 本文應力-應變模式可準確預測反覆載重實驗柱試體之最大撓曲強度及其曲率。zh_TW
dc.description.abstractThe object of this research is to investigate the behavior of confined concrete with different flowability. Factors that affect the behavior are the weight of concrete, water-to-solid ratio, and ratio of coarse aggregate to fine aggregate by weight. Experimental results from 155 column specimens were collected to investigate the behavior differences include 105 normal concrete(NC)columns, 50 high-flowability concrete(HFC)columns, which contains 12 high-workability concrete(HWC)columns, 23 self-consolidating concrete(SCC)columns, and 15 lightweight self-consolidating concrete(LSCC)columns. The results show that: 1. Decrease of the content of coase aggregate in HFC will reduce the flexural stiffness and ductility of the concrete. 2. The flexural stiffness of the ascending branch and the slop of the descending branch of analytical stress-strain models for HFC are influenced by unit weight of concrete, water-to-solid ratio, and ratio of coarse aggregate to fine aggregate by weight. 3. The content of coase aggregate in the HWC columns is the largest, and HWC exhibits better performance than the others. 4. Analytical stress-strain models are proposed for normal concrete and high-flowability concrete. 5. The results of cyclic tests show that HWC columns have better ductility and energy absorption capability than normal concrete columns. The crack widths of HWC columns are smaller than those of normal concrete columns. 6. The analytical stress-strain models proposed can predict maximum flexural strengths and curvatures of columns under cyclic loading with reasonable accuracy.en_US
dc.description.tableofcontents第一章 緒論 1-1 研究動機 1-2 研究目的與方法 第二章 文獻回顧 2-1 相關文獻回顧 2-2 文獻回顧探討 第三章 試體資料及圍束影響因子 3-1試體資料 3-1-1 試體資料收集 3-1-2 試體配比資料 3-2試體之混凝土定義及應力-應變曲線比較指數定義 3-2-1 試體之混凝土定義 3-2-2 試體應力-應變曲線比較指數定義 3-3橫向箍筋對於圍束效應之影響 3-3-1 橫向箍筋間距 3-3-2 橫向箍筋降伏強度 3-3-3 箍筋組合方式 3-3-4 對於試體應力-應變曲線之影響 3-4混凝土材料對於圍束效應之影響 3-4-1 混凝土配比參數 3-4-2 試體應力-應變曲線上升段比較 3-4-3 試體應力-應變最高點比較 3-4-4 試體應力-應變曲線下降段比較 3-4-5 試體延展性比較 3-4-6 高流動性混凝土應力-應變曲線 第四章 圍束混凝土應力-應變模式 4-1 理論推導 4-2 圍束混凝土應力-應變模式預測 4-2-1 本文應力-應變模式 4-2-2 應力-應變關係式及參數討論 4-3 圍束混凝土應力-應變預測值與實驗值比較 4-3-1 最大應力值比較 4-3-2 最大應力值所對應之應變值比較 4-3-3 下降段應變值比較 4-3-4 完整應力-應變曲線比較 第五章 混凝土柱承受反覆橫力之撓曲行為 5-1 研究目的與方法 5-2 試體規劃與實驗方法 5-3 實驗過程 5-4 實驗結果分析與討論 5-4-1 試體破壞行為之觀測 5-4-2 極限撓曲強度 5-4-3 延展性指數 5-4-4 強度與勁度的遞減 5-4-5 能量消散 5-4-6 裂縫觀測 5-4-7 混凝土表面應變值比較 5-4-8 鋼筋之受力情形 5-5 彎矩-曲率圖平均包絡線分析預測 5-5-1 試體材料應力-應變關係 5-5-2 分析之基本假設 5-5-3 分析步驟 5-5-4 實驗與分析之彎矩-曲率圖比較 第六章 結論與建議 6-1 結論 6-2 建議zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系zh_TW
dc.subjectzh_TW
dc.subject圍束混凝土zh_TW
dc.subject流動性zh_TW
dc.subject應力應變關係zh_TW
dc.title不同流動性混凝土之圍束行為zh_TW
dc.titleBehavior of Confined Concrete with Different Flowabilityen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.