Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13463
標題: 家禽里奧病毒M群基因體之序列與μA結構蛋白之功能分析
Analysis of M-class gene sequences and structural protein μA functions of avian reovirus
作者: 蘇育平
Su, Yu-Pin
關鍵字: avian reovirus;雙股RNA;dsRNA;M1;μA;NTPase;phylogenetic tree;核苷三磷酸磷解酶演化樹
出版社: 獸醫學系暨研究所
引用: 呂榮修, 謝快樂, 黃智明 & 李永林 (1970). 在台灣分離之avian reovirus性狀之研究。台灣省畜牧獸醫學會會報 7, 55-64。 林茂勇, 鍾月芳 & 宋華聰 (1986). 肆虐台灣地區雞avian reovirus感染症病例報告。台灣省畜牧獸醫學會會報 47, 35-43。 Antczak, J. B., Chmelo, R., Pickup, D. J. & Joklik, W. K. (1982). Sequence at both termini of the 10 genes of reovirus serotype 3 (strain Dearing). Virology 121, 307-319. Attoui, H., Billoir, F., Biagini, P., de Micco, P. & de Lamballerie, X. (2000a). Complete sequence determination and genetic analysis of Banna virus and Kadipiro virus: proposal for assignment to a new genus (Seadornavirus) within the family Reoviridae. J Gen Virol 81, 1507-1515. Attoui, H., Billoir, F., Biagini, P., Cantaloube, J. F., de Chesse, R., de Micco, P. & de Lamballerie, X. (2000b). Sequence determination and analysis of the full-length genome of colorado tick fever virus, the type species of genus Coltivirus (Family Reoviridae). Biochem Biophys Res Commun 273, 1121-1125. Attoui, H., Fang, Q., Mohd Jaafar, F., Cantaloube, J. F., Biagini, P., de Micco, P. & de Lamballerie, X. (2002). Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol 83, 1941-1951. Bains, B. S., MacKenzie, M. & Spradbrow, P. B. (1974). Reovirus-associated mortality in broiler chickens. Avian Dis 18, 472-476. Baker, T. S., Olson, N. H. & Fuller, S. D. (1999). Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63, 862-922. Bartlett, J. A. & Joklik, W. K. (1988). The sequence of the reovirus serotype 3 L3 genome segment which encodes the major core protein lambda 1. Virology 167, 31-37. Bellamy, A. R. & Joklik, W. K. (1967). Studies on the A-rich RNA of reovirus. Proc Natl Acad Sci U S A 58, 1389-1395. Benavente, J. & Martinez-Costas, J. (2007). Avian reovirus: structure and biology. Virus Res 123, 105-119. Bergeron, J., Mabrouk, T., Garzon, S. & Lemay, G. (1998). Characterization of the thermosensitive ts453 reovirus mutant: increased dsRNA binding of sigma 3 protein correlates with interferon resistance. Virology 246, 199-210. Bigot, Y., Drezen, J. M., Sizaret, P. Y., Rabouille, A., Hamelin, M. H. & Periquet, G. (1995). The genome segments of DpRV, a commensal reovirus of the wasp Diadromus pulchellus (Hymenoptera). Virology 210, 109-119. Bisaillon, M., Bergeron, J. & Lemay, G. (1997). Characterization of the nucleoside triphosphate phosphohydrolase and helicase activities of the reovirus lambda1 protein. J Biol Chem 272, 18298-18303. Bodelon, G., Labrada, L., Martinez-Costas, J. & Benavente, J. (2001). The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. Virology 290, 181-191. Bodelon, G., Labrada, L., Martinez-Costas, J. & Benavente, J. (2002). Modification of late membrane permeability in avian reovirus-infected cells: viroporin activity of the S1-encoded nonstructural p10 protein. J Biol Chem 277, 17789-17796. Brentano, L., Noah, D. L., Brown, E. G. & Sherry, B. (1998). The reovirus protein mu2, encoded by the M1 gene, is an RNA-binding protein. J Virol 72, 8354-8357. Broering, T. J., Parker, J. S., Joyce, P. L., Kim, J. & Nibert, M. L. (2002). Mammalian reovirus nonstructural protein microNS forms large inclusions and colocalizes with reovirus microtubule-associated protein micro2 in transfected cells. J Virol 76, 8285-8297. Chandran, K., Parker, J. S., Ehrlich, M., Kirchhausen, T. & Nibert, M. L. (2003). The delta region of outer-capsid protein micro 1 undergoes conformational change and release from reovirus particles during cell entry. J Virol 77, 13361-13375. Chiu, C. J. & Lee, L. H. (1997). Cloning and nucleotide sequencing of the S4 genome segment of avian reovirus S1133. Arch Virol 142, 2515-2520. Clark, F. D., Ni, Y., Collisson, E. W. & Kemp, M. C. (1990). Characterization of avian reovirus strain-specific polymorphisms. Avian Dis 34, 304-314. Conti, C. J. (1992). Mutations of genes of the ras family in human and experimental tumors. Prog Clin Biol Res 376, 357-378. Costas, C., Martinez-Costas, J., Bodelon, G. & Benavente, J. (2005). The second open reading frame of the avian reovirus S1 gene encodes a transcription-dependent and CRM1-independent nucleocytoplasmic shuttling protein. J Virol 79, 2141-2150. Cross, R. K. & Fields, B. N. (1972). Temperature-sensitive mutants of reovirus type 3: studies on the synthesis of viral RNA. Virology 50, 799-809. Deshmukh, D. R. & Pomeroy, B. S. (1969a). Ultraviolet inactivation and photoreactivation of avian viruses. Avian Dis 13, 596-602. Deshmukh, D. R. & Pomeroy, B. S. (1969b). Avian reoviruses. 3. Infectivity and egg transmission. Avian Dis 13, 427-439. Deshmukh, D. R., Dutta, S. K. & Pomeroy, B. S. (1971). Avian reoviruses. V. Studies of ultrastructural morphology by electron microscopy. Avian Dis 15, 588-595. Diaz-Ruiz, J. R. & Kaper, J. M. (1978). Isolation of viral double-stranded RNAs using a LiCl fractionation procedure. Prep Biochem 8, 1-17. Dryden, K. A., Farsetta, D. L., Wang, G., Keegan, J. M., Fields, B. N., Baker, T. S. & Nibert, M. L. (1998). Internal/structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. Virology 245, 33-46. Duncan, R. (1996). The low pH-dependent entry of avian reovirus is accompanied by two specific cleavages of the major outer capsid protein mu 2C. Virology 219, 179-189. Duncan, R., Chen, Z., Walsh, S. & Wu, S. (1996). Avian reovirus-induced syncytium formation is independent of infectious progeny virus production and enhances the rate, but is not essential, for virus-induced cytopathology and virus egress. Virology 224, 453-464. Enserink, M. (2007). Virology. From two mutations, an important clue about the Spanish flu. Science 315, 582. Fahey, J. E. & Crawley, J. F. (1954). [Respiratory diseases in Canadian poultry, 1951-53.]. Rev Can Biol 13, 171-188. Farsetta, D. L., Chandran, K. & Nibert, M. L. (2000). Transcriptional activities of reovirus RNA polymerase in recoated cores. Initiation and elongation are regulated by separate mechanisms. J Biol Chem 275, 39693-39701. Fukushi, T., Shikata, E. & Kimura, I. (1962). Some morphological characters of rice dwarf virus. Virology 18, 192-205. Glass, S. E., Naqi, S. A., Hall, C. F. & Kerr, K. M. (1973). Isolation and characterization of a virus associated with arthritis of chickens. Avian Dis 17, 415-424. Gomatos, P. J. & Stoeckenius, W. (1964). Electron microscope studies on reovirus RNA. Proc Natl Acad Sci U S A 52, 1449-1455. Gouvea, V. S. & Schnitzer, T. J. (1982a). Polymorphism of the migration of double-stranded RNA genome segments of avian reoviruses. J Virol 43, 465-471. Gouvea, V. S. & Schnitzer, T. J. (1982b). Polymorphism of the genomic RNAs among the avian reoviruses. J Gen Virol 61 (Pt l), 87-91. Grande, A. & Benavente, J. (2000). Optimal conditions for the growth, purification and storage of the avian reovirus S1133. J Virol Methods 85, 43-54. Grande, A., Rodriguez, E., Costas, C., Everitt, E. & Benavente, J. (2000). Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigmaC. Virology 274, 367-377. Gross, C. H. & Shuman, S. (1996). The QRxGRxGRxxxG motif of the vaccinia virus DExH box RNA helicase NPH-II is required for ATP hydrolysis and RNA unwinding but not for RNA binding. J Virol 70, 1706-1713. Guardado Calvo, P., Fox, G. C., Hermo Parrado, X. L., Llamas-Saiz, A. L., Costas, C., Martinez-Costas, J., Benavente, J. & van Raaij, M. J. (2005). Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J Mol Biol 354, 137-149. Heggen-Peay, C. L., Qureshi, M. A., Edens, F. W., Sherry, B., Wakenell, P. S., O''Connell, P. H. & Schat, K. A. (2002). Isolation of a reovirus from poult enteritis and mortality syndrome and its pathogenicity in turkey poults. Avian Dis 46, 32-47. Hibino, H. (1996). Biology and epidemiology of rice viruses. Annu Rev Phytopathol 34, 249-274. Hillman, B. I., Supyani, S., Kondo, H. & Suzuki, N. (2004). A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the coltivirus genus of animal pathogens. J Virol 78, 892-898. Horscroft, N. J. & Roy, P. (2000). NTP binding and phosphohydrolase activity associated with purified bluetongue virus non-structural protein NS2. J Gen Virol 81, 1961-1965. Hsiao, J., Martinez-Costas, J., Benavente, J. & Vakharia, V. N. (2002). Cloning, expression, and characterization of avian reovirus guanylyltransferase. Virology 296, 288-299. Huang, D. D., Nugent, M. A., Rosenberger, J. K. & Schnitzer, T. J. (1987). Association of avian reovirus M and S genes with viral behavior in vivo. II. Viral pathogenicity. Avian Dis 31, 446-454. Isogai, M., Uyeda, I. & Lindsten, K. (1998). Taxonomic characteristics of fijiviruses based on nucleotide sequences of the oat sterile dwarf virus genome. J Gen Virol 79 (Pt 6), 1479-1485. Janeway, C. M., Xu, X., Murphy, J. E., Chaidaroglou, A. & Kantrowitz, E. R. (1993). Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Biochemistry 32, 1601-1609. Joklik, W. K., Bellamy, A. R. & Holowczak, J. A. (1969). Reovirus genome RNA, messenger RNA and A-rich RNA. Proc Can Cancer Conf 8, 216-241. Jones, R. C., Jordan, T. W. & Lioupis, S. (1975). Characteristics of reovirus isolated from ruptured gastrocnemius tendons of chickens. Vet Rec 96, 153-154. Kavenoff, R., Talcove, D. & Mudd, J. A. (1975). Genome-sized RNA from reovirus particles. Proc Natl Acad Sci U S A 72, 4317-4321. Kawamura, H. & Tsubahara, H. (1966). Common antigenicity of avian reoviruses. Natl Inst Anim Health Q (Tokyo) 6, 187-193. Kim, J., Parker, J. S., Murray, K. E. & Nibert, M. L. (2004). Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2. J Biol Chem 279, 4394-4403. Koide, F., Suzuka, I. & Sekiguchi, K. (1968). Some properties of an adenine-rich polynucleotide fragment from the avian reovirus. Biochem Biophys Res Commun 30, 95-99. Kozak, M. (1999). Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187-208. Krug, R. M. & Gomatos, P. J. (1969). Absence of adenine-rich ribonucleic acid from purified infectious reovirus 3. J Virol 4, 642-650. Kuo, M. D., Chin, C., Hsu, S. L., Shiao, J. Y., Wang, T. M. & Lin, J. H. (1996). Characterization of the NTPase activity of Japanese encephalitis virus NS3 protein. J Gen Virol 77 (Pt 9), 2077-2084. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. Lee, L. F., Nazerian, K. & Burmester, B. R. (1973). Characterization of avian reovirus 24. Avian Dis 17, 559-567. Lee, L. H., Wang, Y. H. & Shien, J. H. (1992). Serological characterization of reoviruses isolated from avian species in Taiwan. J Chin Vet Sci 18, 69-77. Lin, P. Y., Liu, H. J., Lai, M. J., Yu, F. L., Hsu, H. Y., Lee, J. W. & Shih, W. L. (2006). Avian reovirus activates a novel proapoptotic signal by linking Src to p53. Apoptosis 11, 2179-2193. Liu, H. J., Lee, L. H., Hsu, H. W., Kuo, L. C. & Liao, M. H. (2003). Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages. Virology 314, 336-349. Liu, H. J., Lin, P. Y., Lee, J. W., Hsu, H. Y. & Shih, W. L. (2005). Retardation of cell growth by avian reovirus p17 through the activation of p53 pathway. Biochem Biophys Res Commun 336, 709-715. Liu, T. C. & Kirn, D. (2007). Systemic efficacy with oncolytic virus therapeutics: clinical proof-of-concept and future directions. Cancer Res 67, 429-432. Luongo, C. L., Zhang, X., Walker, S. B., Chen, Y., Broering, T. J., Farsetta, D. L., Bowman, V. D., Baker, T. S. & Nibert, M. L. (2002). Loss of activities for mRNA synthesis accompanies loss of lambda2 spikes from reovirus cores: an effect of lambda2 on lambda1 shell structure. Virology 296, 24-38. Lupas, A. (1997). Predicting coiled-coil regions in proteins. Curr Opin Struct Biol 7, 388-393. Mao, Z. X. & Joklik, W. K. (1991). Isolation and enzymatic characterization of protein lambda 2, the reovirus guanylyltransferase. Virology 185, 377-386. Martinez-Costas, J., Varela, R. & Benavente, J. (1995). Endogenous enzymatic activities of the avian reovirus S1133: identification of the viral capping enzyme. Virology 206, 1017-1026. Martinez-Costas, J., Gonzalez-Lopez, C., Vakharia, V. N. & Benavente, J. (2000). Possible involvement of the double-stranded RNA-binding core protein sigmaA in the resistance of avian reovirus to interferon. J Virol 74, 1124-1131. Martinez-Costas, J., Grande, A., Varela, R., Garcia-Martinez, C. & Benavente, J. (1997). Protein architecture of avian reovirus S1133 and identification of the cell attachment protein. J Virol 71, 59-64. Matsudaira, P. (1987). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262, 10035-10038. McNeilly, F., Smyth, J. A., Adair, B. M. & McNulty, M. S. (1995). Synergism between chicken anemia virus (CAV) and avian reovirus following dual infection of 1-day-old chicks by a natural route. Avian Dis 39, 532-537. Meanger, J., Wickramasinghe, R., Enriquez, C. E., Robertson, M. D. & Wilcox, G. E. (1995). Type-specific antigenicity of avian reoviruses. Avian Pathol 24, 121-134. Mendez, II, Hermann, L. L., Hazelton, P. R. & Coombs, K. M. (2000). A comparative analysis of freon substitutes in the purification of reovirus and calicivirus. J Virol Methods 90, 59-67. Menendez, N. A., Calnek, B. W. & Cowen, B. S. (1975). Localization of avian reovirus (FDO isolant) in tissues of mature chickens. Avian Dis 19, 112-117. Mertens, P. P. C., Attoui, H., Duncan, R. & Dermody, T. S. (2005). Reoviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 447-454. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. London: Elsevier/Academic Press. Muller, B. H., Lamoure, C., Le Du, M. H., Cattolico, L., Lajeunesse, E., Lemaitre, F., Pearson, A., Ducancel, F., Menez, A. & Boulain, J. C. (2001). Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket. Chembiochem 2, 517-523. Myette, J. R. & Niles, E. G. (1996). Characterization of the vaccinia virus RNA 5''-triphosphatase and nucleotide triphosphate phosphohydrolase activities. Demonstrate that both activities are carried out at the same active site. J Biol Chem 271, 11945-11952. Neumann, G., Fujii, K., Kino, Y. & Kawaoka, Y. (2005). An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci U S A 102, 16825-16829. Ni, Y. & Kemp, M. C. (1992). Strain-specific selection of genome segments in avian reovirus coinfections. J Gen Virol 73, 3107-3113. Ni, Y. & Kemp, M. C. (1995). A comparative study of avian reovirus pathogenicity: virus spread and replication and induction of lesions. Avian Dis 39, 554-566. Ni, Y. W. & Kemp, M. C. (1990). Selection of genome segments following coinfection of chicken fibroblasts with avian reoviruses. Virology 177, 625-633. Nibert, M. L. & Fields, B. N. (1992). A carboxy-terminal fragment of protein mu 1/mu 1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration. J Virol 66, 6408-6418. Nibert, M. L., Odegard, A. L., Agosto, M. A., Chandran, K. & Schiff, L. A. (2005). Putative autocleavage of reovirus mu1 protein in concert with outer-capsid disassembly and activation for membrane permeabilization. J Mol Biol 345, 461-474. Noad, L., Shou, J., Coombs, K. M. & Duncan, R. (2006). Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Virus Res. 116, 45-57 Noble, S. & Nibert, M. L. (1997a). Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein lambda1. J Virol 71, 2182-2191. Noble, S. & Nibert, M. L. (1997b). Core protein mu2 is a second determinant of nucleoside triphosphatase activities by reovirus cores. J Virol 71, 7728-7735. Olson, N. O. & Kerr, K. M. (1966). Some characteristics of an avian arthritis viral agent. Avian Dis 10, 470-476. Page, R. K., Fletcher, O. J., Jr. & Villegas, P. (1982). Infectious tenosynovitis in young turkeys. Avian Dis 26, 924-927. Pagni, M., Ioannidis, V., Cerutti, L., Zahn-Zabal, M., Jongeneel, C. V. & Falquet, L. (2004). MyHits: a new interactive resource for protein annotation and domain identification. Nucle Acids Res 32, W332-335. Pantin-Jackwood, M. J., Spackman, E. & Day, J. M. (2007). Pathology and virus tissue distribution of Turkey origin reoviruses in experimentally infected Turkey poults. Vet Pathol 44, 185-195. Paoletti, E. & Moss, B. (1974). Two nucleic acid-dependent nucleoside triphosphate phosphohydrolases from vaccinia virus. Nucleotide substrate and polynucleotide cofactor specificities. J Biol Chem 249, 3281-3286. Parker, J. S., Broering, T. J., Kim, J., Higgins, D. E. & Nibert, M. L. (2002). Reovirus core protein mu2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J Virol 76, 4483-4496. Payne, C. C., Piasecka-Serafin, M. & Pilley, B. (1977). The properties of two recent isolates of cytoplasmic polyhedrosis viruses. Intervirology 8, 155-163. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567. Pertile, T. L., Walser, M. M., Sharma, J. M. & Shivers, J. L. (1996). Immunohistochemical detection of lymphocyte subpopulations in the tarsal joints of chickens with experimental viral arthritis. Vet Pathol 33, 303-310. Pett, D. M., Vanaman, T. C. & Joklik, W. K. (1973). Studies on the amino and carboxyl terminal amino acid sequences of reovirus capsid polypeptides. Virology 52, 174-186. Rabouille, A., Bigot, Y., Drezen, J. M., Sizaret, P. Y., Hamelin, M. H. & Periquet, G. (1994). A member of the reoviridae (DpRV) has a ploidy-specific genomic segment in the wasp Diadromus pulchellus (Hymenoptera). Virology 205, 228-237. Ramadevi, N. & Roy, P. (1998). Bluetongue virus core protein VP4 has nucleoside triphosphate phosphohydrolase activity. J Gen Virol 79 (Pt 10), 2475-2480. Rariy, R. V. & Klibanov, A. M. (1997). Correct protein folding in glycerol. Proc Natl Acad Sci U S A 94, 13520-13523. Rekik, M. R. & Silim, A. (1992). Comparison of a vaccine strain and field isolates of avian reovirus by T1-oligonucleotide mapping. Avian Dis 36, 237-246. Rekik, M. R., Silim, A. & Elazhary, M. A. (1990). Characteristics and analysis of electropherotypes of avian reovirus field isolates. Vet Microbiol 23, 273-281. Rikkonen, M., Peranen, J. & Kaariainen, L. (1994). ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol 68, 5804-5810. Robertson, M. D. & Wilcox, G. E. (1986). Avian reovirus. Veterinary Bulletin 56, 155-174. Roner, M. R. & Joklik, W. K. (2001). Reovirus reverse genetics: Incorporation of the CAT gene into the reovirus genome. Proc Natl Acad Sci U S A 98, 8036-8041. Roner, M. R. & Roehr, J. (2006). The 3'' sequences required for incorporation of an engineered ssRNA into the Reovirus genome. Virol J 3, 1. Roner, M. R. & Mutsoli, C. (2007). The use of monoreassortants and reverse genetics to map reovirus lysis of a ras-transformed cell line. J Virol Methods 139, 132-142. Roner, M. R., Bassett, K. & Roehr, J. (2004). Identification of the 5'' sequences required for incorporation of an engineered ssRNA into the Reovirus genome. Virology 329, 348-360. Rosenberger, J. K., Fries, P. A., Cloud, S. S. & Wilson, R. A. (1985). In vitro and in vivo characterization of avian Escherichia coli. II. Factors associated with pathogenicity. Avian Dis 29, 1094-1107. Rudd, P. & Lemay, G. (2005). Correlation between interferon sensitivity of reovirus isolates and ability to discriminate between normal and Ras-transformed cells. J Gen Virol 86, 1489-1497. Ruff, M. D. & Rosenberger, J. K. (1985). Concurrent infections with reoviruses and coccidia in broilers. Avian Dis 29, 465-478. Sahu, S. P., Olson, N. O. & Townsend, R. W. (1979). Characterization of avian reoviruses isolated from the synovia and breast blister. Avian Dis 23, 896-903. Schagger, H. & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368-379. Schnitzer, T. J., Ramos, T. & Gouvea, V. (1982). Avian reovirus polypeptides: analysis of intracellular virus-specified products, virions, top component, and cores. J Virol 43, 1006-1014. Sekiguchi, K., Koide, F. & Kawamura, H. (1968). Physico-chemical properties of avian reovirus and its nucleic acid. Arch Gesamte Virusforsch 24, 123-136. Shapouri, M. R., Kane, M., Letarte, M., Bergeron, J., Arella, M. & Silim, A. (1995). Cloning, sequencing and expression of the S1 gene of avian reovirus. J Gen Virol 76 (Pt 6), 1515-1520. Shen, P. C., Chiou, Y. F., Liu, H. J., Song, C. H., Su, Y. P. & Lee, L. H. (2007). Genetic variation of the lambdaA and lambdaC protein encoding genes of avian reoviruses. Res Vet Sci. Shih, W. L., Hsu, H. W., Liao, M. H., Lee, L. H. & Liu, H. J. (2004). Avian reovirus sigmaC protein induces apoptosis in cultured cells. Virology 321, 65-74. Shmulevitz, M. & Duncan, R. (2000). A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. Embo J 19, 902-912. Shmulevitz, M., Yameen, Z., Dawe, S., Shou, J., O''Hara, D., Holmes, I. & Duncan, R. (2002). Sequential partially overlapping gene arrangement in the tricistronic S1 genome segments of avian reovirus and Nelson Bay reovirus: implications for translation initiation. J Virol 76, 609-618. Songserm, T., van Roozelaar, D., Kant, A., Pol, J., Pijpers, A. & ter Huurne, A. (2003). Enteropathogenicity of Dutch and German avian reoviruses in SPF white leghorn chickens and broilers. Vet Res 34, 285-295. Spandidos, D. A. & Graham, A. F. (1976). Physical and chemical characterization of an avian reovirus. J Virol 19, 968-976. Springer, W. T., Olson, N. O., Kerr, K. M. & Fabacher, C. J. (1983). Responses of specific-pathogen-free chicks to concomitant infections of reovirus (WVU-2937) and infectious bursal disease virus. Avian Dis 27, 911-917. Strong, J. E., Coffey, M. C., Tang, D., Sabinin, P. & Lee, P. W. (1998). The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. Embo J 17, 3351-3362. Su, Y. P., Su, B. S., Shien, J. H., Liu, H. J. & Lee, L. H. (2006). The sequence and phylogenetic analysis of avian reovirus genome segments M1, M2, and M3 encoding the minor core protein muA, the major outer capsid protein muB, and the nonstructural protein muNS. J Virol Methods 133, 146-157. Takehara, K., Kimura, Y., Tanaka, Y. & Yoshimura, M. (1987). Preparation and characterization of monoclonal antibodies against an avian reovirus. Avian Dis 31, 730-734. Tang, K. N., Fletcher, O. J. & Villegas, P. (1987). Comparative study of the pathogenicity of avian reoviruses. Avian Dis 31, 577-583. Taraporewala, Z., Chen, D. & Patton, J. T. (1999). Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol 73, 9934-9943. Taraporewala, Z. F. & Patton, J. T. (2001). Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75, 4519-4527. Taylor, D. L., Olson, N. O. & Burrell, R. G. (1966). Adaptation of an avian arthritis viral agent to tissue culture. Avian Dis 10, 462-470. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680. Touris-Otero, F., Martinez-Costas, J., Vakharia, V. N. & Benavente, J. (2004a). Avian reovirus nonstructural protein microNS forms viroplasm-like inclusions and recruits protein sigmaNS to these structures. Virology 319, 94-106. Touris-Otero, F., Cortez-San Martin, M., Martinez-Costas, J. & Benavente, J. (2004b). Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions. J Mol Biol 341, 361-374. Touris-Otero, F., Martinez-Costas, J., Vakharia, V. N. & Benavente, J. (2005). Characterization of the nucleic acid-binding activity of the avian reovirus non-structural protein sigma NS. J Gen Virol 86, 1159-1169. Tumpey, T. M., Maines, T. R., Van Hoeven, N., Glaser, L., Solorzano, A., Pappas, C., Cox, N. J., Swayne, D. E., Palese, P., Katz, J. M. & Garcia-Sastre, A. (2007). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655-659. Van de Zande, S. & Kuhn, E. M. (2007). Central nervous system signs in chickens caused by a new avian reovirus strain: A pathogenesis study. Vet Microbiol 120, 42-49. van der Heide, L. & Kalbac, M. (1975). Infectious tenosynovitis (viral arthritis): characterization of a Connecticut viral isolant as a reovirus and evidence of viral egg transmission by reovirus-infected broiler breeders. Avian Dis 19, 683-688. van der Heide, L., Lutticken, D. & Horzinek, M. (1981). Isolation of avian reovirus as a possible etiologic agent of osteoporosis ("brittle bone disease" "femoral head necrosis") in broiler chickens. Avian Dis 25, 847-856. van Loon, A. A., Koopman, H. C., Kosman, W., Mumczur, J., Szeleszczuk, O., Karpinska, E., Kosowska, G. & Lutticken, D. (2001). Isolation of a new serotype of avian reovirus associated with malabsorption syndrome in chickens. Vet Q 23, 129-133. Varela, R. & Benavente, J. (1994). Protein coding assignment of avian reovirus strain S1133. J Virol 68, 6775-6777. Varela, R., Martinez-Costas, J., Mallo, M. & Benavente, J. (1996). Intracellular posttranslational modifications of S1133 avian reovirus proteins. J Virol 70, 2974-2981. Vasiljeva, L., Merits, A., Auvinen, P. & Kaariainen, L. (2000). Identification of a novel function of the alphavirus capping apparatus. RNA 5''-triphosphatase activity of Nsp2. J Biol Chem 275, 17281-17287. Vasquez-Del Carpio, R., Gonzalez-Nilo, F. D., Riadi, G., Taraporewala, Z. F. & Patton, J. T. (2006). Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J Mol Biol 362, 539-554. Vasserman, Y., Eliahoo, D., Hemsani, E., Kass, N., Ayali, G., Pokamunski, S. & Pitcovskiad, J. (2004). The influence of reovirus sigma C protein diversity on vaccination efficiency. Avian Dis 48, 271-278. von Bulow, V. & Clasen, A. (1983). Effects of avian reoviruses on cultured chicken bone-marrow-derived macrophages. Avian Pathol 12, 179-198. Warrener, P., Tamura, J. K. & Collett, M. S. (1993). RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. J Virol 67, 989-996. Wickramasinghe, R., Meanger, J., Enriquez, C. E. & Wilcox, G. E. (1993). Avian reovirus proteins associated with neutralization of virus infectivity. Virology 194, 688-696. Wiener, J. R. & Joklik, W. K. (1988). Evolution of reovirus genes: a comparison of serotype 1, 2, and 3 M2 genome segments, which encode the major structural capsid protein mu 1C. Virology 163, 603-613. Wiener, J. R., Bartlett, J. A. & Joklik, W. K. (1989). The sequences of reovirus serotype 3 genome segments M1 and M3 encoding the minor protein mu 2 and the major nonstructural protein mu NS, respectively. Virology 169, 293-304. Wilcox, G. E. & Compans, R. W. (1982). Cell fusion induced by Nelson Bay virus. Virology 123, 312-322. Wood, G. W., Muskett, J. C. & Thornton, D. H. (1986). Observations on the ability of avian reovirus vaccination of hens to protect their progeny against the effects of challenge with homologous and heterologous strains. J Comp Pathol 96, 125-129. Wood, G. W., Nicholas, R. A., Hebert, C. N. & Thornton, D. H. (1980). Serological comparisons of avian reoviruses. J Comp Pathol 90, 29-38. Wu, W. Y., Shien, J. H., Lee, L. H. & Shieh, H. K. (1994). Analysis of the double-stranded RNA genome segments among avian reovirus field isolates. J Virol Methods 48, 119-122. Xu, W., Patrick, M. K., Hazelton, P. R. & Coombs, K. M. (2004). Avian reovirus temperature-sensitive mutant tsA12 has a lesion in major core protein sigmaA and is defective in assembly. J Virol 78, 11142-11151. Yin, H. S. & Lee, L. H. (1998). Identification and characterization of RNA-binding activities of avian reovirus non-structural protein sigmaNS. J Gen Virol 79 (Pt 6), 1411-1413. Yin, H. S. & Lee, L. H. (2000). Characterization of avian reovirus non structural protein sigmaNS synthesized in Escherichia coli. Virus Res 67, 1-9. Yin, H. S., Shieh, H. K. & Lee, L. H. (1997). Characterization of the double-stranded RNA genome segment S3 of avian reovirus. J Virol Methods 67, 93-101. Yin, H. S., Shien, J. H. & Lee, L. H. (2000). Synthesis in Escherichia coli of avian reovirus core protein varsigmaA and its dsRNA-binding activity. Virology 266, 33-41. Yin, H. S., Su, Y. P. & Lee, L. H. (2002). Evidence of nucleotidyl phosphatase activity associated with core protein sigma A of avian reovirus S1133. Virology 293, 379-385. Yin, P., Keirstead, N. D., Broering, T. J., Arnold, M. M., Parker, J. S., Nibert, M. L. & Coombs, K. M. (2004). Comparisons of the M1 genome segments and encoded mu2 proteins of different reovirus isolates. Virol J 1, 6. Yu, L. & Shuman, S. (1996). Mutational analysis of the RNA triphosphatase component of vaccinia virus mRNA capping enzyme. J Virol 70, 6162-6168. Zhang, X., Tang, J., Walker, S. B., O''Hara, D., Nibert, M. L., Duncan, R. & Baker, T. S. (2005). Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 343, 25-35. Zou, S. & Brown, E. G. (1992). Nucleotide sequence comparison of the M1 genome segment of reovirus type 1 Lang and type 3 Dearing. Virus Res 22, 159-164.
摘要: 
將12個ARV病毒株之M群基因體進行選殖定序。S1133的M1、M2與M3片段長度分別為2283、2158與1196個核苷酸。所負責轉錄之蛋白質μA、μB與μNS之長度分別為732、676與635個胺基酸。基因體5′ 端的序列在M1片段為5′ GCUUUU,而M2與M3片段則為5′ GCUUUUU,此特徵可見於ARV之其他基因片段;在3′ 端部分三者皆為UCAUC,此特徵則共通於MRV與ARV。將各不同病毒株間之序列相似度進行比對分析,顯示M2片段與其轉錄之μB蛋白質有較高之變異度。
以資料庫比對各片段中之motif,結果顯示μA蛋白質中帶有一段NH2-Leu-Ala-Leu-Asp-Pro-Pro-Phe-COOH(residues 458-464)序列,可能為N-6 adenine-specific DNA methylase。針對ARV μB與MRV μ1胺基酸序列進行比對,推測μB/μBC的蛋白質切割位在Asn42與Pro43之間,此位置於各毒株皆相同。除此之外,將純化之ARV S1133病毒顆粒以胰蛋白酶(trypsin)消化切割,可將μBC切成近N端的 δ片段,以及近C端的φ片段,經蛋白質N端定序結果證實其切位在Asn582與Gly583之間,此位置與MRV μ1C相似,證明μBC在功能上應與MRV之μ1C為同質物。將各片段作演化親緣分析,結果可將M1分為3個族群,M2為5個族群,M3則可分為2族群,各片段之演化分群與病毒之血清型或致病型並無相關性,且M2之五個分群關係可跨越M1與M3之不同分群,顯示ARV病毒之M1、M2與M3基因片段之演化變異與基因重分配(reassortment)並不具一致性。
經由家禽里奧病毒μA蛋白質胺基酸序列的比對,顯示其功能應類似於哺乳類里奧病毒的μ2蛋白質。利用大腸桿菌Escherichia coli表現系統來表現ARV之μA蛋白質,並分析其NTPase與RTPase的活性。結果顯示純化的μA表現蛋白具有NTPase活性,能水解四種核三磷酸(nucleoside triphosphates, NTPs)上之β-γ phosphoanhydride bond,而釋放出NDPs,以酵素動力學分析其 kcat 值,對四類NTP的偏好性為ATP > CTP > GTP > UTP。利用定點突變法(site-directed mutagenesis)作μA胺基酸修飾,將第408 與412的lysine以alanine取代,結果能使重組突變蛋白質K408A/K412A rμA失去NTPase活性,證明此處為其NTPase的活性中心。rμA的NTPase活性需要二價離子Mg2+ 與 Mn2+ 的參與,但不需 Ca2+ 或 Zn2+ 離子。其反應最佳之酸鹼值約pH 5.5到6.0之間,溫度由25 °C開始反應活性逐漸上升,至40 °C達最大,然後開始下降,至55 °C以上便幾乎被抑制。以試管內轉錄(in vitro transcription)之單股RNA作為受質,結果顯示rμA能分解RNA 5′ 端的磷酸根,而K408A/K412A rμA則不具有RTPase活性,證明重組蛋白質rμA之NTPase與RTPase的活性可能位於相同區域,且μA蛋白質應為ARV病毒RNA合成過程中之重要蛋白質。

The sequences and phylogenetic analyses of the M-class genome segments of 12 avian reovirus strains are described. The M1, M2 or M3 genome segment of S1133 strains is 2283, 2158 or 1996 base pairs long, respectively, encoding a protein μA, μB or μNS consisted of 732, 676 and 635 amino acids, respectively. The M1 genome segment has the 5' GCUUUU terminal motif, but each M2 and M3 genome segment displays the 5' GCUUUUU terminal motif which is common to other known avian reovirus genome segments. The UCAUC 3'-terminal sequences of the M-class genome segments are shared by both avian and mammalian reoviruses. Analysis of the average degree of the M-class gene and the deduced μ-class protein sequence identities indicated that the M2 genes and the μB proteins have the greatest level of sequence divergence.
Computer searches revealed that the μA possesses a sequence motif (NH2-Leu-Ala-Leu-Asp-Pro-Pro-Phe-COOH) (residues 458-464) indicative of N-6 adenine-specific DNA methylase. Examination of the μB amino acid sequences indicated that the cleavage site of μB into μBN and μBC is between positions 42 and 43 near the N-terminus of the protein, and this site is conserved for each protein. During in vitro treatment of virions with trypsin to yield infectious subviral particles, both the N-terminal fragment δ and the C-terminal fragment φ were shown to be generated. The site of trypsin cleavage was identified in the deduced amino acid sequence of μB by determining the amino-terminal sequences of φ proteins: between arginine 582 and glycine 583. The predicted length of δ generated from μBC is very similar to that of δ generated from mammalian reovirus μ1C. Taken together, protein μB is structurally, and probably functionally, similar to its mammalian homolog, μ1. Phylogenetic analysis of the M-class genes revealed that the predicted phylograms delineated 3 M1, 5 M2, and 2 M3 lineages, no correlation with serotype or pathotype of the viruses. The results also showed that M2 lineages I-V consist of a mixture of viruses from the M1 and M3 genes of lineages I-III, reflecting frequent reassortment of these genes among virus strains.
Analysis of amino acid sequence of core protein μA of avian reovirus has indicated that μA may share similar functions to protein μ2 of mammalian reovirus. Since μ2 displayed both NTPase and RTPase activities, μA was thus expressed in bacteria with a 4.5-kDa fusion peptide and six-His tag at its N-terminus. The purified recombinant μA (rμA) was used to test its NTPase and RTPase activities. Results indicated that rμA possessed NTPase activity that enabled the protein to hydrolyze the β-γ phosphoanhydride bond of all four NTPs since NDP was the only radiolabeled product. The substrate preference was ATP > CTP > GTP > UTP, based on the estimated kcat values. Alanine substitutions for lysines 408 and 412 (K408A/K412A) in a putative nucleotide binding site of rμA abolished NTPase activity, further suggesting that NTPase activity is attributable to protein rμA. The activity of rμA is dependent on the divalent cations Mg2+ or Mn2+, but not Ca2+ or Zn2+. Optimal pH for NTPase activity of rμA was achieved between pH 5.5 and 6.0. In addition, rμA enzymatic activity increased with temperature until 40 °C and was almost totally inhibited at temperature higher than 55 °C. Tests of phosphate release from RNA substrates with rμA or K408A/K412A rμA indicated that rμA but not K408A/K412A rμA displayed RTPase activity. The results suggested that both NTPase and RTPase activities of rμA might be carried out at the same active site and protein μA would play important roles during viral RNA synthesis.
URI: http://hdl.handle.net/11455/13463
其他識別: U0005-3007200718161900
Appears in Collections:獸醫學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.