Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/13540
標題: | 利用藥物誘發小鼠大腸炎症及大腸癌之研究 Study of Drug Induced Colitis and Colorectal Cancer in Mice |
作者: | 吳聞笛 Wu, Wen-Di |
關鍵字: | Colorectal cancer;大腸癌;Colitis;DNBS;AOM;DSS;炎症;DNBS;AOM;DSS | 出版社: | 獸醫學系暨研究所 | 引用: | 1. Archer MC, Bruce WR, Chan CC, Corpet DE, Medline A, Roncucci L, Stamp D, Zhang XM. Aberrant crypt foci and microadenoma as markers for colon cancer. Environ Health Perspect 98: 195-197, 1992. 2. Ayabe T, Ashida T, Kohgo Y, Kono T. The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends Microbiol 12: 394-398, 2004. 3. Baron JA, Beach M, Mandel JS, van Stolk RU, Haile RW, Sandler RS, Rothstein R, Summers RW, Snover DC, Beck GJ, Bond JH, Greenberg ER. Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group. N Engl J Med 340: 101-107, 1999. 4. Bissahoyo A, Pearsall RS, Hanlon K, Amann V, Hicks D, Godfrey VL, Threadgill DW. Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol Sci 88: 340-345, 2005. 5. Brattain MG, Strobel-Stevens J, Fine D, Webb M, Sarrif AM. Establishment of mouse colonic carcinoma cell lines with different metastatic properties. Cancer Res 40: 2142-2146, 1980. 6. Brunton VG, Ozanne BW, Paraskeva C, Frame MC. A role for epidermal growth factor receptor, c-Src and focal adhesion kinase in an in vitro model for the progression of colon cancer. Oncogene 14: 283-293, 1997. 7. Bülow S, Björk J, Christensen IJ, Fausa O, Järvinen H, Moesgaard F, Vasen HF, DAF Study Group. Duodenal adenomatosis in familial adenomatous polyposis. Gut 53: 381-386, 2004. 8. Cameron A, Nicholson S, Nimrod C, Harder J, Davies D, Fritzler M. Evaluation of fetal cardiac dysrhythmias with two-dimensional, M-mode, and pulsed Doppler ultrasonography. Am J Obstet Gynecol 158: 286-290, 1988. 9. Cho E, Smith-Warner SA, Ritz J, Van den Brandt PA, Colditz GA, Folsom AR. Alcohol intake and colorectal cancer: A pooled analysis of 8 cohort studies. Ann Intern Med 140: 603-613, 2004. 10. Cooper HS, Murthy S, Kido K, Yoshitake H, Flanigan A. Dysplasia and cancer in the dextran sulfate sodium mouse colitis model. Relevance to colitis-associated neoplasia in the human: a study of histopathology, b-catenin and p53 expression and the role of inflammation. Carcinogenesis 21: 757-768, 2000. 11. Dimitrova V, Markov D, Dimitrov R. [3D and 4D ultrasonography in obstetrics] Akush Ginekol (Sofiia) 46: 31-40, 2007. 12. Dubois RN, Abramson SB, Crofford L. Cyclooxygenase in biology and disease. Faseb J 12: 1063-1073, 1998. 13. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107: 1183-1188, 1994. 14. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 10: 721-733, 2001. 15. Garland CF, Garland FC, Gorham ED. The role of vitamin D in cancer prevention. Am J Public Health 96: 252-261, 2006. 16. Giovannucci E. Insulin and colon cancer. Cancer Causes Control 6: 164-179, 1995. 17. Giovannucci E, Martinez ME. Tobacco, colorectal cancer and adenomas: a review of the evidence. J Nail Cancer Inst 88: 1717-1730, 1996. 18. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev 23: 11-27, 2004. 19. Griewing B, Morgenstern C, Driesner F, Kallwellis G, Walker ML, Kessler C. Cerebrovascular disease assessed by color-flow and power Doppler ultrasonography. Comparison with digital subtraction angiography in internal carotid artery stenosis. Stroke 27: 95-100, 1996. 20. Griffin-Sobel JP. Symptom management of advanced colorectal cancer. Surg Oncol Clin N Am 15: 213-222, 2006. 21. Guarner F. Enteric flora in health and disease. Digestion 73: 5-12, 2006. 22. Heavey PM, McKenna D, Rowland IR. Colorectal cancer and the relationship between genes and the environment. Nutr Cancer 48: 124-141, 2004. 23. Herron DC, Shank RC. Quantitative high pressure liquid chromatographic analysis of methylated purines in DNA of rats treated with chemical carcinogens. Anal Biochem 100: 58-63, 1979. 24. Hirose Y, Hata K, Kuno T, Yoshida K, Sakata K, Yamada Y, Tanaka T, Reddy BS, Mori H. Enhancement of development of azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice. Carcinogenesis 25: 821-825, 2004. 25. Hollenbach E, Vieth M, Roessner A. Inhibition of RICK/nuclear factor-kB and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. J Biol Chem 280: 14981-14988, 2005. 26. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science 153: 1127-1128, 1966. 27. Ishida BY, Blanche PJ, Nichols AV, Yashar M, Paigen B. Effects of atherogenic diet consumption on lipoproteins in mouse strains C57BL/6 and C3H. J Lipid Res 32: 559-568, 1991. 28. Itzkowitz SH, Harpaz N. Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. Gastroenterology 126: 1634-1648, 2004. 29. Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287: G7-G17, 2004. 30. Iwasaki A, Kelsall BL. Mucosal immunity and inflammation. I. Mucosal dendritic cells: their specialized role in initiating T cell responses. Am J Physiol 276: G1074-G1078, 1999. 31. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 58: 71-96, 2008. 32. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ. Cancer statistics, 2004. CA Cancer J Clin 54: 8-29, 2004. 33. Jess T, Gamborg M, Matzen P, Munkholm P, Sorensen TI. Increased risk of intestinal cancer in Crohn's disease: a meta-analysis of population-based cohort studies. Am J Gastroenterol 100: 2724-2729, 2005. 34. Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog 45: 355-361, 2006. 35. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 87: 159-170, 1996. 36. Kirk EA, Moe GL, Caldwell MT, Lernmark JA, Wilson DL, LeBoeuf RC. Hyper- and hypo-responsiveness to dietary fat and cholesterol among inbred mice: searching for level and variability genes. J Lipid Res 36: 1522-1532, 1995. 37. Kodama H, Fujita M, Yamaguchi I. Development of hyperglycaemia and insulin resistance in conscious genetically diabetic (C57BL/KsJ-db/db) mice. Diabetologia 37: 739-744, 1994. 38. Kumagai H, Kawaura A, Furuya K, Izumi K, Otsuka H. Perianal lesions of BALB/c mice induced by 1,2-dimethylhydrazine dihydrochloride and methylazoxymethanol-acetate: their classification and histogenesis. Gann 73: 358-364, 1982. 39. Lamb K, Zhong F, Gebhart GF. Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol Gastrointest Liver Physiol 290: G451-G457, 2006. 40. Likhachev AJ, Margison GP, Montesano R. Alkylated purines in the DNA of various rat tissues after administration of 1,2-dimethylhydrazine. Chem Biol Interact 18: 235-240, 1977. 41. Linskens RK, Huijsdens XW, Savelkoul PH, Vandenbroucke-Grauls CM, Meuwissen SG. The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scand J Gastroenterol Suppl 234: 29-40, 2001. 42. Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 126: 1504-1517, 2004. 43. Lupulescu A. Enhancement of carcinogenesis by prostaglandins. Nature 272: 634-636, 1978. 44. MacFarlane AJ, Stover PJ. Convergence of genetic, nutritional and inflammatory factors in gastrointestinal cancers. Nutr Rev 65: S157-S166, 2007. 45. Mähler M, Bristol IJ, Leiter EH, Workman AE, Birkenmeier EH, Elson CO, Sundberg JP. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 274: G544-G551, 1998. 46. Martínez ME, McPherson RS, Annegers JF, Levin B. Association of diet and colorectal adenomatous polyps: dietary fiber, calcium, and total fat. Epidemiology 7: 264-268, 1996. 47. Matsumoto H, Higa H. Studies on methylazoxymethanol, the aglycone of cycasin: methylation of nucleic acids in vitro. Biochem J 98: 20c-22c, 1966. 48. Maurer CR Jr, Gaston RP, Hill DL, Gleeson MJ, Taylor MG, Fenlon MR, Edwards PJ, Hawkes DJ. AcouStick: An optically tracked A-mode ultrasonography system for registration in image-guided neurosurgery. Stereotact Funct Neurosurg 72: 143-144, 1999. 49. McKeown-Eyssen G. Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol. Biomarkers Prey 3: 687-695, 1994. 50. Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K, Muraoka M, Takahashi H, Amada Y, Fukayama M. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res 54: 3011-3020, 1994. 51. Morin PJ. beta-catenin signaling and cancer. Bioessays 21: 1021-1030, 1999. 52. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96: 795-803, 1989. 53. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 3: 331-341, 2003. 54. Mowat AM, Millington OR, Chirdo FG. Anatomical and cellular basis of immunity and tolerance in the intestine. J Pediatr Gastroenterol Nutr 39: 723-724, 2004. 55. Muñoz Agel F, Varas Lorenzo MJ. Tridimensional (3D) ultrasonography. Rev Esp Enferm Dig 97: 125-134, 2005. 56. Nambiar PR, Girnun G, Lillo NA, Guda K, Whiteley HE, Rosenberg DW. Preliminary analysis of azoxymethane induced colon tumors in inbred mice commonly used as transgenic/knockout progenitors. Int J Oncol 22: 145-150, 2003. 57. Nishina PM, Verstuyft J, Paigen B. Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 31: 859-869, 1990. 58. Noce JP. Fundamentals of diagnostic ultrasonography. Biomed Instrum Technol 24: 456-459, 1990. 59. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98: 694-702, 1990. 60. Okayasu I, Yamada M, Mikami T, Yoshida T, Kanno J, Ohkusa T. Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model. J Gastroenterol Hepatol 17: 1078-1083, 2002. 61. O'Toole SM, Pegg AE, Swenberg JA. Repair of O6-methylguanine and O4-methylthymidine in F344 rat liver following treatment with 1,2-dimethylhydrazine and O6-benzylguanine. Cancer Res 53: 3895-3898, 1993. 62. Pal M. Proportionate increase in incidence of colorectal cancer at an age below 40 years: an observation. J Cancer Res Ther 2: 97-99, 2006. 63. Papanikolaou A, Wang QS, Delker DA, Rosenberg DW. Azoxymethane-induced colon tumors and aberrant crypt foci in mice of different genetic susceptibility. Cancer Lett 130: 29-34, 1998. 64. Papanikolaou A, Wang QS, Papanikolaou D, Whiteley HE, Rosenberg DW. Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21: 1567-1572, 2000. 65. Park Y, Hunter DJ, Spiegelman D, Bergkvist L, Berrino F, Van den Brandt PA. Dietary fiber intake and risk of colorectal cancer: A pooled analysis of prospective cohort studies. JAMA 294: 2849-2857, 2005. 66. Pavlovic-Calic N, Muminhodzic K, Zildzic M, Smajic M, Gegic A, Alibegovic E, Salkic N, Jovanovic P, Basic M, Iljazovic S. Genetics, clinical manifestations and management of FAP and HNPCC. Med Arh 61: 256-259, 2007. 67. Radtke F, Clevers H, Riccio O. From gut homeostasis to cancer. Curr Mol Med 6: 275-289, 2006. 68. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 434: 843-850, 2005. 69. Risques RA, Rabinovitch PS, Brentnall TA. Cancer surveillance in inflammatory bowel disease: new molecular approaches. Curr Opin Gastroenterol 22: 382-390, 2006. 70. Rodrigo L, Riestra S. Diet and colon cancer. Rev Esp Enferm Dig 99: 183-189, 2007. 71. Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membranebound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 80: 227-236, 2006. 72. Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk: A meta-analytical approach. Cancer Epidemiol Biomarkers Prev 10: 439-446, 2001. 73. Scheiffele F, Fuss IJ. Induction of TNBS colitis in mice. Curr Protocols Immunol Chapter 15: Unit 15.19, 2002. 74. Scheller J, Ohnesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol 63: 321-329, 2006. 75. Schottelius AJ, Dinter H. Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res 130: 67-87, 2006. 76. Silverman KA, Koratkar RA, Siracusa LD, Buchberg AM. Exclusion of Madh2, Madh4, and Madh7 as candidates for the modifier of Min 2 (Mom2) locus. Mamm Genome 14: 119-129, 2003. 77. Slattery ML, Curtin K, Anderson K, Ma KN, Edwards S, Leppert M, Potter J, Schaffer D, Samowitz WS. Associations between dietary intake and Ki-ras mutations in colon tumors: a population-based study. Cancer Res 60: 6935-6941, 2000. 78. Sohn OS, Ishizaki H, Yang CS, Fiala ES. Metabolism of azoxymethane, methylazoxymethanol and N-nitrosodimethylamine by cytochrome P450IIE1. Carcinogenesis 12: 127-131, 1991. 79. Suh JH, Lim SD, Kim JC, Hong SH, Kang GH. Comparison of clinicopathologic characteristics and genetic alterations between microsatellite instability-positive and microsatellite instability-negative sporadic colorectal carcinomas in patients younger than 40 years old. Dis Colon Rectum 45: 219-228, 2002. 80. Suzuki R, Kohno H, Sugie S, Nakagama H, Tanaka T. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 27: 162-169, 2006. 81. Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer 42: 745-750, 2006. 82. Takahashi M, Wakabayashi K. Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci 95: 475-480, 2004. 83. te Velde AA, Verstege MI, Hommes DW. Critical appraisal of the current practice in murine TNBS-induced colitis. Inflamm Bowel Dis 12: 995-999, 2006. 84. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93: 705-716, 1998. 85. Uhlig HH, Powrie F. Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses. J Clin Invest 112: 648-651, 2003. 86. van Horssen R, Ten Hagen TL, Eggermont AM. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11: 397-408, 2006. 87. Walker J, Quirke P. Prognosis and response to therapy in colorectal cancer. Eur J Cancer 38: 880-886, 2002. 88. Walker WA. Role of the mucosal barrier in toxin/microbial attachment to the gastrointestinal tract. Ciba Found Symp 112: 34-56, 1985. 89. Wallace JL, Le T, Carter L, Appleyard CB, Beck PL. Hapten-induced chronic colitis in the rat: alternatives to trinitrobenzene sulfonic acid. J Pharmacol Toxicol Methods 33: 237-239, 1995. 90. Watanabe T, Nakaya N, Kurashima K, Kuriyama S, Tsubono Y, Tsuji I. Constipation, laxative use and risk of colorectal cancer: The Miyagi Cohort Study. Eur J Cancer 40: 2109-2115, 2004. | 摘要: | 本研究使用C57BL/6JNarl雄性小鼠,由肛門灌入2或3 mg的2,4-Dinitrobenzene sulfonic acid hydrate (DNBS),分別在3天及14天後評估大腸的發炎程度。病理結果顯示在第一次灌藥後3天可見急性大腸炎症反應,並且於某些腸道區段,有大量炎症細胞聚集及腸黏膜壞死的現象。然而在第一次灌藥後14天觀察,炎症反應便已消退,且大腸黏膜皆恢復正常。因此這一動物模式較適合用來研究大腸急性期炎症反應,而不適合做慢性炎症性腸道疾病或進一步誘發大腸癌的探討。文獻指出azoxymethane (AOM)單獨注射或倂用dextran sodium sulfate (DSS)口服可誘發小鼠大腸癌,本研究亦使用C57BL/6JNarl及BKS.Cg-+Leprdb/+Leprdb雄性小鼠,皮下注射AOM 10 mg/kg,每週1次共3次,於40週後始發現aberrant crypt foci (ACF)。另一方面,若選用BALB/cByJNarl雄性小鼠,僅1次腹腔注射相同劑量的AOM,於一週後連續給予7天1% DSS於飲水中,在22週便可觀察到ACF。這些結果顯示配合不同藥物及小鼠品系的使用,可誘發ACF來建立一個良好的動物模式供腸道疾病之研究。 The severities of colonic inflammation were assessed 3 and 14 days after rectum injection of 2,4-Dinitrobenzene sulfonic acid (DNBS) 2 or 3 mg in C57BL/6JNarl male mice. The pathological results showed DNBS produced acute colitis 3 days after first administration with inflammatory cells aggregation and mucosa necrosis, especially in certain sections of colon. However, on day 14, the inflammation had subsided and the mucosa was recovered to normal. Therefore, this animal model is suitable for the study of acute colitis than chronic colitis or further colorectal cancer research. Previous studies showed that injection of azoxymethane (AOM) alone or with oral exposure to dextran sodium sulfate (DSS) could induce mouse colorectal cancer. In this study, C57BL/6JNarl and BKS.Cg-+Leprdb/+Leprdb male mice were treated subcutaneous with AOM 10 mg/kg once a week for 3 weeks. The aberrant crypt foci (ACF) can only be observed after 40 weeks. On the other hand, BALB/cByJNarl mice were given a single intraperitoneal injection of AOM, followed by 1% DSS in drinking water for 7 days, ACF can be observed after 22 weeks. These results indicated that drugs and mouse strains coordination should be considered for ACF induction in the establishment of intestinal disease mouse model. |
URI: | http://hdl.handle.net/11455/13540 | 其他識別: | U0005-1108200817392300 |
Appears in Collections: | 獸醫學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.