Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13616
DC FieldValueLanguage
dc.contributor張登欽zh_TW
dc.contributor蔡向榮zh_TW
dc.contributor葉光勝zh_TW
dc.contributor張照勤zh_TW
dc.contributor.advisor陳德勛zh_TW
dc.contributor.author林正忠zh_TW
dc.contributor.authorLin, Cheng-Chungen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:51:03Z-
dc.date.available2014-06-06T06:51:03Z-
dc.identifierU0005-2301200911075000zh_TW
dc.identifier.citation參考文獻 王正雄、施泰華、江啟平、鄭聰旭、丘志威。超級市場、傳統市場及家禽電宰場雞屠體之生菌數和沙門氏桿菌污染調查。動物保護公共論壇論文集。台北。189-202。2004。 行政院農業委員會畜牧處,中華民國95年農業統計年報。2006。 (Website: http://www.coa.gov.tw/htmlarea_file/web_articles/8721/122.pdf) 李淵百。台灣土雞的育種改良與產業趨勢。農業生技產業季刊。2005。5-11。行政院農委會 台北 (Website: http://agbio.coa.gov.tw/information_detail.aspx?dno=12851&ito=30&item=) 林正忠、劉哲宏、張照勤、李維誠、劉正義、陳德勛。不同來源之豬隻沙氏桿菌流行病學調查:探討台灣居民感染人畜共通沙氏桿菌症風險。台灣公共衛生雜誌。2008。27: 243-249。 林正忠、郭俊緯、張照勤、王裕智、沈瑞鴻、葉光勝、陳德勛。上市白肉雞與仿土雞之沙氏桿菌分離率與抗藥性比較。台灣獸醫誌。2008。34: 217-225。 林興誠。傳統市場家禽活體屠宰問題面面觀。動物保護公共論壇論文集。2004。179-186。 周崇熙、蔡向榮。台灣肉雞沙氏桿菌、彎曲桿菌之盛行率及抗菌劑感受性調查。中華獸醫誌2001。27: 27-38。 邱蘭皓。台灣南部地區雞場沙門氏菌流行病學研究:血清群、抗藥性及基因型分析。碩士論文。國立嘉義大學動物科學系暨研究所。2004。 徐本立。台灣地區不同規模肉雞電宰場之屠宰衛生品質調查。中興大學畜產學系研究所碩士論文。2001。 郭乃維。碩士論文。家禽屠宰場與市售屠體沙氏桿菌與彎曲桿菌汙染情形調查。國立台灣大學獸醫學研究所。2002。 郭俊緯。碩士論文。傳統市場與屠宰場仿土雞沙門氏桿菌污染之調查研究。國立中興大學獸醫病理學研究所。2007。 謝志宏。種禽及孵化蛋之沙門氏菌的疫情與抗藥性分析。碩士論文。國立嘉義大學獸醫學系暨研究所。2006。 Aarestrup FM, Hendriksen RS, Lockett J, Gay K, Teates K, McDermott PF, White DG, Hasman H, Sørensen G, Bangtrakulnonth A, Pornreongwong S, Pulsrikarn C, Angulo FJ, Gerner-Smidt P. International spread of multidrug-resistant Salmonella Schwarzengrund in food products. Emerg Infect Dis 2007;13:726-731. Baucheron S, Chaslus-Dancla E, Cloeckaert A Chiu CH, Butaye P. High-Level Resistance to Fluoroquinolones Linked to Mutations in gyrA, parC, and parE in Salmonella enterica Serovar Schwarzengrund Isolates from Humans in Taiwan. Antimicrob Agents Chemother 2005;49:862-863. Berri C, Debut M, Santé-Lhoutellier V, Arnould C, Boutten B, Sellier N, Baéza E, Jehl N, Jégo Y, Duclos MJ, Le Bihan-Duval E. Variations in chicken breast meat quality: implications of struggle and muscle glycogen content at death. Br Poult Sci. 2005;46:572-579. Biendo M, Thomas D, Dechepy O, Laurans G, Eb F. Molecular epidemiology of ampicillin-resistant clinical isolates of Salmonella enterica serovar Typhimurium. Int J Med Microbiol. 2003;293:219-223. Burkholder KM, Thompson KL, Einstein ME, Applegate TJ, Patterson JA. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poult Sci. 2008;87:1734-1741. Birgitte Borck and Anne Wingstrand. Salmonella. In: Annual Report on Zoonoses in Denmark Danish Zoonosis Centre, Danish Veterinary Institute 2002: 4-17 (Website:http://www.dfvf.dk/Files/Filer/Zoonosecentret/Publikationer/Annual%20Report/Annual_Report_2002_fra_Datagraf.pdf) Campo JL and García Gil M. Internal inclusions in brown eggs: relationships with fearfulness and stress. Poult Sci. 1998;77:1743-1747. Caprioli A, Busani L, Martel JL, Helmuth R. Monitoring of antibiotic resistance in bacteria of animal origin: epidemiological and microbiological methodologies. Int J Antimicrob Agents. 2000;14:295-301. Chang CC, Lin YH, Chang CF, Yeh KS, Chiu CH, Chu C, Chien MS, Hsu YM, Tsai LS, Chiou CS. Epidemiologic relationship between fluoroquinolone-resistant Salmonella enterica Serovar Choleraesuis strains isolated from humans and pigs in Taiwan (1997 to 2002). J Clin Microbiol. 2005;43:2798-2804. Chang CF, Chang LC, Chang YF, Chen M, Chiang TS. Antimicrobial susceptibility of Actinobacillus pleuropneumoniae, Escherichia coli and Salmonella Choleraesuis recovered from Taiwanese swine. J Vet Diagn Invest 2002;14: 153-157. Chen PL, Wu CJ, Chang CM, Lee HC, Lee NY, Shih HI, Lee CC, Ko NY, Wang LR, Ko WC. Extraintestinal focal infections in adults with Salmonella enterica serotype Choleraesuis bacteremia. J Microbiol Immunol Infect 2007;40: 240-247. Chen TH, Wang YC, Chen YT, Yang CH, Yeh KS. Serotype occurrence and antimicrobial susceptibility of Salmonella isolates recovered from pork carcasses in Taiwan (2000 through 2003). J Food Prot 2006;69: 674-678. Chiu CH, Su LH, Chu C, Chia JH, Wu TL, Lin TY, Lee YS, Ou JT. Isolation of Salmonella enterica serotype Choleraesuis resistant to ceftriaxone and ciprofloxacin. Lancet 2004;363:1285-1286. Chiu CH, Wu TL, Su LH, Chu C, Chia JH, Kuo AJ, Chien MS, Lin TY. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis. N Engl J Med 2002;346: 413-419. Chow EY, Wu JT, Jauho ES, Heegaard PM, Nilsson E, Harris IT, Manninen K. Evaluation of a covalent mix-enzyme linked immunosorbent assay for screening of Salmonella antibodies in pig serum. Can J Vet Res. 2004;68:134-139. Christensen J, Baggesen DL, Nielsen B, Stryhn H. Herd prevalence of Salmonella spp. in Danish pig herds after implementation of the Danish Salmonella Control Program with reference to a pre-implementation study. Vet Microbiol. 2002;88:175-188. Davies PR, Turkson PK, Funk JA, Nichols MA, Ladely SR, Fedorka-Cray PJ. Comparison of methods for isolating Salmonella bacteria from faeces of naturally infected pigs. J Appl Microbiol. 2000;89:169-177. Debut M, Berri C, Arnould C, Guemené D, Santé-Lhoutellier V, Sellier N, Baéza E, Jehl N, Jégo Y, Beaumont C, Le Bihan-Duval E. Behavioural and physiological responses of three chicken breeds to pre-slaughter shackling and acute heat stress. Br Poult Sci. 2005;46:527-535. Ebel ED, David MJ, Mason J. Occurrence of Salmonella enteritidis in the U.S. commercial egg industry: report on a national spent hen survey. Avian Dis. 1992;36:646-654. EFSA. EFSA to work with European partner institutes on Salmonella in pigs. 2007. (Website: http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620789200.htm) EFSA. Opinion of the Scientific Panel on biological hazards (BIOHAZ) related to “Risk assessment and mitigation options of Salmonella in pig production” 2006. (Website: http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620776028.htm) Endtz HP, van den Braak N, van Belkum A, Kluytmans JA, Koeleman JG, Spanjaard L, Voss A, Weersink AJ, Vandenbroucke-Grauls CM, Buiting AG, van Duin A, Verbrugh HA. Fecal carriage of vancomycin-resistant enterococci in hospitalized patients and those living in the community in The Netherlands. J Clin Microbiol. 1997;35:3026-3031. Epi-info, 3.01 CDC. 2003.(http://www.cdc.gov/epiinfo/) Faldynova M, Pravcova M, Sisak F, Havlickova H, Kolackova I, Cizek A, Karpiskova R, Rychlik I. Evolution of antibiotic resistance in Salmonella enterica serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob Agents Chemother. 2003;47:2002-2005. FDA. Chapter 5 Salmonella. In: Bacteriological analytical manual Online, 2007. (website: http://www.cfsan.fda.gov/~ebam/bam-5.htm) Fedorka-Cray PJ, Gray JT, Wray C. Salmonella infections in pigs. In: Wray C, Wray A eds. Salmonella in Domestic Animals.: CABI publishing, New York. 2000;191-207. Funk JA, Harris IT, Davies PR. Comparison of fecal culture and Danish Mix-ELISA for determination of Salmonella enterica subsp. enterica prevalence in growing swine. Vet Microbiol. 2005;107:115-126. Gray JT and Fedorka-Cray P. Detection of swine exposed to Salmonella spp. Proceedings of the 3rd International Symposium on the Epidemiology and Control of Salmonella in Pork, Washington, USA.1997. 46-50. Gray JT, Fedorka-Cray PJ, Stabel TJ, Kramer TT. Natural transmission of Salmonella choleraesuis in swine. Appl Environ Microbiol 1996;62: 141-146. Griffith RW, Schwartz KJ, Meyerholz DK. Salmonella. In: Straw BE, Zimmerman JJ, D’Allaire Taylor AJ ed. Diseases of swine 9th ed. Blackwell Publishing UK. 2006; 739-754. Grimont PAD and Weill FX. Antigenic formulas of the Salmonella serovars 9th revision.. WHO Collaborating Center for Reference Research on Salmonella. Institut Pasteur, Paris Frence. 2007;6-15. Hambrecht E, Eissen JJ, Newman DJ, Smits CH, den Hartog LA, Verstegen MW. Negative effects of stress immediately before slaughter on pork quality are aggravated by suboptimal transport and lairage conditions. J Anim Sci. 2005;83:440-448. Helmuth R. Antibiotic resistance in Salmonella, In: Wray C, Wray A eds. Salmonella in Domestic Animals. New York: CABI publishing, 2000;89-106. Hollinger K. Epidemiology and Salmonellosis. In: Wray C, Wray A eds. Salmonella in Domestic Animals.: CABI publishing, New York 2000;341-353. Hsu SC, Chiu TH, Pang JC, Hsuan-Yuan CH, Chang GN, Tsen HY. Characterization of antimicrobial resistance patterns and class 1 integrons among Escherichia coli and Salmonella enterica serovar Choleraesuis strains isolated from humans and swine in Taiwan. Int J Antimicrob Agents 2006;27:383-391. Hsueh PR, Teng LJ, Tseng SP, Chang CF, Wan JH, Yan JJ, Lee CM, Chuang YC, Huang WK, Yang D, Shyr JM, Yu KW, Wang LS, Lu JJ, Ko WC, Wu JJ, Chang FY, Yang YC, Lau YJ, Liu YC, Liu CY, Ho SW, Luh KT. Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from pigs to humans, Taiwan. Emerg Infect Dis. 2004;10:60-68. Huang TM, Chang YF, Chang CF. Antimicrobial susceptibility and resistance gene determinants in clinical Escherichia coli and Salmonella enterica serovar Choleraesuis swine isolates. Taiwan Vet J 2004;30:116-124. Humphrey T. Public-health aspects of Salmonella infection. In: Wray C, Wray A eds. Salmonella in Domestic Animals.: CABI publishing, New York 2000;245-263. Hurd HS, Gailey JK, McKean JD, Rostagno MH. Rapid infection in market-weight swine following exposure to Salmonella typhimurium-contaminated environment. Am J Vet Res 2001;62: 1194-1197. Hurd HS, McKean JD, Griffith RD, Rostagno MH. Estimation of the Salmonella enterica prevalence in finishing swine. Epidemiol Infect. 2004;132:127-135 Hurd HS, McKean JD, Wesley IV, Karriker LA. The effect of lairage on Salmonella isolation from market swine. J Food Prot 2001;64:939-944. ISO. Microbiology of food and animal feeding stuffs—Horizontal method for the detection of Salmonella spp (ISO 6579: 2002). 2002. (Website: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29315 Jean SS, Wang JY, Hsueh PR. Bacteremia caused by Salmonella enterica serotype Choleraesuis in Taiwan. J Microbiol Immunol Infect 2006;39:358-365. Kaiser P, Wu Z, Rothwell L, Fife M, Gibson M, Poh TY, Shini A, Bryden W, Shini S. Prospects for understanding immune-endocrine interactions in the chicken. Gen Comp Endocrinol. 2008. (impressing) Knowles TG, Warriss PD, Brown SN, Kestin SC, Rhind SM, Edwards JE, Anil MH, Dolan SK. Long distance transport of lambs and the time needed for subsequent recovery. Vet Rec. 1993;133:286-293. Lailler R, Grimont F, Jones Y, Sanders P, Brisabois A. Subtyping of Salmonella typhimurium by pulsed-field gel electrophoresis and comparisons with phage types and resistance types. Pathol Biol (Paris). 2002 ;50:361-368. Lauderdale TL, Aarestrup FM, Chen PC. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn Microbiol Infect Dis 2006;55:149-155. Lo Fo Wong DM, Dahl J, Stege H, van der Wolf PJ, Leontides L, von Altrock A, Thorberg BM. Herd-level risk factors for subclinical Salmonella infection in European finishing-pig herds. Prev Vet Med. 2004;62:253-266. Lo Fo Wong DM, Dahl J, van der Wolf PJ, Wingstrand A, Leontides L, von Altrock A. Recovery of Salmonella enterica from seropositive finishing pig herds. Vet Microbiol. 2003;97:201-214. Loynachan AT, Harris DL. Dose determination for acute salmonella infection in pigs. Appl Environ Microbiol 2005;71:2753-2755 McDonald LC, Chen MT, Lauderdale TL, Ho M. The use of antibiotics critical to human medicine in food-producing animals in Taiwan. J Microbiol Immunol Infect 2001;34: 97-102 McEwen SA and Fedorka-Cray PJ. Antimicrobial use and resistance in animals..Clin Infect Dis. 2002;34:S93-S106. Minor LL. Facultatively anaerobic gram-negative rods. In: Holt JG. Bergey’s manual of systemic bacteriology 1st ed..1988. William and Wilkinsm, Baltomore, USA. 427-458. Mousing J, Jensen PT, Halgaard C, Bager F, Feld N, Nielsen B, Nielsen JP, Bech-Nielsen S. Nation-wide Salmonella enterica surveillance and control in Danish slaughter swine herds. Prev Vet Med. 1997;29:247-261. Murase T, Yamada M, Muto T, Matsushima A, Yamai S. Fecal excretion of Salmonella enterica serovar typhimurium following a food-borne outbreak. J Clin Microbiol. 2000;38:3495-3497. Murray CJ. Environment aspects of Salmonella. In: Wray C, Wray A eds. Salmonella in Domestic Animals. CABI publishing, New York. 2000;265-283. Nielsen B, Alban L, Stege H, Sørensen LL, Møgelmose V, Bagger J, Dahl J, Baggesen DL. A new Salmonella surveillance and control programme in Danish pig herds and slaughterhouses. Berl Munch Tierarztl Wochenschr. 2001;114: 323-326. Nielsen B, Baggesen D, Bager F, Haugegaard J, Lind P. The serological response to Salmonella serovars typhimurium and infantis in experimentally infected pigs. The time course followed with an indirect anti-LPS ELISA and bacteriological examinations. Vet Microbiol. 1995;47:205-218. OIE, Chapter 2.9.9 Salmonellosis, In: Manual of diagnostic tests and vaccines for terrestrial animals 5th ed. Paris Frence. 2008:1267-1283. Poppe C, Irwin RJ, Messier S, Finley GG, Oggel J. The prevalence of Salmonella enteritidis and other Salmonella spp. among Canadian registered commercial chicken broiler flock. Epidemiol Infect 1991:107: 201-211. Poppe C. Salmonella infections in the domestic fowl. In: Wray C, Wray A, ed. Salmonella in domestic animals. CABI Publishing, New York. 2000;107-132. Rasschaert G, Houf K, Godard C, Wildemauwe C, Pastuszczak-Frak M, De Zutter L. Contamination of carcasses with Salmonella during poultry slaughter. J Food Prot 2008;71:146-152. Schwartz KJ. Salmonellosis. In: Straw BE, D’Allaire S, Mengeling WL and Taylor DJ. Distase of swine 8th ed... Iowa state university press, Iowa USA. 1999;536-551. Smith NH and Selander RK. Molecular genetic basis for complex flagellar antigen expression in a triphasic serovar of Salmonella. Proc Natl Acad Sci U S A. 1991;88:956-960. Sørensen LL, Alban L, Nielsen B, Dahl J. The correlation between Salmonella serology and isolation of Salmonella in Danish pigs at slaughter. Vet Microbiol. 2004;101:131-141. Swanenburg M, Urlings HA, Keuzenkamp DA, Snijders JM. Salmonella in the lairage of pig slaughterhouses. J Food Prot 2001;64: 12-16. Swartz MN. Human diseases caused by foodborne pathogens of animal origin. Clin Infect Dis. 2002;34:S111-122. Terlouw EMC, Arnould C, Auperin B, Berri C, Le Bihan-Duval, Deiss V, Lefevre BJ. Pre-slaughter conditions, animal stress and welfare: current status and possible future research. Animal 2008;2:1501-1517. Threlfall EJ, Ward LR, Frost JA, Willshaw GA. The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol. 2000;62:1-5. Tindall BJ, Grimont PA, Garrity GM, Euzéby JP. Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol. 2005;55:521-524. van den Bogaard AE and Stobberingh EE. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents. 2000;14:327-35. van der Heijden HM, First international ring trial of ELISAs for Salmonella-antibody detection in swine. In: Proceedings of the 4th International Symposium on the Epidemiology and Control of Salmonella and other food borne pathogens in Pork : Salinpork 2001, Leipzig, Germany 481-491. van der Wolf PJ, Elbers AR, van der Heijden HM, van Schie FW, Hunneman WA, Tielen MJ. Salmonella seroprevalence at the population and herd level in pigs in The Netherlands. Vet Microbiol. 2001;80:171-184. van der Wolf PJ, Wolbers WB, Elbers AR, van der Heijden HM, Koppen JM, Hunneman WA, van Schie FW, Tielen MJ. Herd level husbandry factors associated with the serological Salmonella prevalence in finishing pig herds in The Netherlands. Vet Microbiol. 2001;78:205-219. vd Giessen AW, Peters R, Berkers PA, Jansen WH, Notermans SH. Salmonella contamination of poultry flocks in The Netherlands. Vet Q. 1991;13:41-46. Wang JY, Hwang JJ, Hsu CN, Lin LC, Hsueh PR. Bacteremia due to ciprofloxacin-resistanant Salmonella enterica serotype Choleraesuis in adult patients at a university hospital in Taiwan, 1996-2004. Epidemiol Infect 2006;134:977-984. Wang YC, Yeh KS, Chang CC, Hsuan SL, Chen TH. Fluoroquinolone-resistant Salmonella sp. in carcasses. Emerg Infect Disease 2006;12:351-352. Wegener HC, Hald T, Lo Fo Wong D, Madsen M, Korsgaard H, Bager F, Gerner-Smidt P, Mølbak K. Salmonella control programs in Denmark. Emerg Infect Dis. 2003;9:774-780. Wikler MA, Low DE, Cockerill FR, Sheehan DJ, Craig WA, Tenover FC, Dudley MN, Turnidge JD, Eliopoulos GM, Weinstein MP, Hecht DW, Zimmer BL, Hindler JF, Ferraro MJ, Swenson JM. Performance standards for antimicrobial disk susceptibility tests; approved standard. 9th ed. 2007. (Website: http://www.clsi.org/source/orders/free/m2-a9F.pdf) Witte W. Ecological impact of antibiotic use in animals on different complex microflora: environment. Int J Antimicrob Agents. 2000;14:321-325. Yan J, Bao E, Yu J. Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature. Res Vet Sci. 2008. (impressing) Yeh KS, Chen SP, Lin JH. One-year (2003) nationwide pork carcass microbiological baseline data survey in Taiwan. J Food Prot 2005;68: 458-461.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/13616-
dc.description.abstract本論文主要探討台灣地區上市期豬與雞隻沙氏桿菌之分離率、血清型及抗藥性。豬隻以ELISA法測血清。糞便與動物內臟則以ISO 6579增菌培養法分離並鑑定沙氏桿菌血清型。以紙錠擴散法測菌株之抗藥性。結果以chi-square test分析。 以mix-ELISA (Chekit&reg;)調查2003年台灣地區264家豬場與3724頭近上市豬隻之血清。結果場陽性率與豬隻陽性率分別為44%與10.1%。以多變項邏輯迴歸分析,比較地理位置、豬場型態、豬場規模與豬隻陽性率之關係。發現:北部與東部地區豬隻陽性率顯著高於中部、南部與外島。不同豬場型態間無差異。而<20頭及>2000頭之豬場陽性率高於21-500頭及501-2000頭之豬場。形成原因尚不明瞭,有待進一步探討地理位置與規模使血清陽性率差異的原因。 分離豬場肥育豬、屠宰豬之糞便,以及收集臨床敗血型沙氏桿菌症病例之沙氏桿菌菌株,結果臨床例幾乎都為C1群之S. Choleraesuis。肥育豬之陽性率為23.6% (66/280)且以B群菌為主。而屠宰豬為48.1% (76/158)以B及C1群菌為主(均非S. Choleraesuis)。平均抗藥性,臨床病例達78.5%,顯著高於屠宰豬(39.4%)與肥育豬(39.2%)。顯示臨床病例之豬隻(保育豬為主)其沙氏桿菌感染血清型與抗藥性不同於上市豬群。消費者若慎選合格屠檢之豬肉,應無感染S. Choleraesuis的風險。 以已上市之白肉雞(皆來自屠宰場)與仿土雞(屠宰場與傳統市場各半),內臟分離鑑定沙氏桿菌並比較其抗藥性。仿土雞之分離率(62.7%)高於白肉雞(43.7%)。同時都呈現肝、膽分離率高於盲腸內容物。仿土雞以S. Albany 163株最多(47.2%),但白肉雞則是S. Albany與S. Schwarzengrund及S. Enteritidis 三分離株數量相近(都約占2成)。顯示不同雞品種有不同的盛行血清型。二雞品種之分離株皆有抗藥性且為多重抗藥性;且仿土雞比白肉雞嚴重。顯示仿土雞應更加注意其沙氏桿菌分離率偏高的問題。尤其消費者在傳統市場選購仿土雞時,會增加其沙氏桿菌污染的風險。 最後為了解仿土雞之傳統市場高分離率原因,設計不同時間分離組與不同環境分離組調查內臟沙氏桿菌分離率。結果到達傳統市場6小時組(77.8%)遠高於剛到達組(13.9%),OR值達21.7。不同環境組,於傳統市場6小時與剛到達組之分離率均與不同時間組結果相似。但明顯地,將雞隻移置到黑暗、清淨、安靜的環境,可使陽性率維持與剛到達時的比率相近而不上升。顯示雞之在衛生良好且安靜的環境較不會使雞隻緊迫或恐懼,有助於維持分離率不上升。而仿土雞在傳統市場的繫留時間,並非沙氏桿菌高分離率的主要成因。zh_TW
dc.description.abstractThe purpose of this study was to investigate the prevalence, serovars and antimicrobial resistance of Salmonella isolated from pigs and chickens in Taiwan. Sera collected from fattening pigs were assessed by ELISA. Salmonella isolated from feces and viscera of both species were sero-typed according to the ISO 6579 and Kauffmann-White scheme. Antimicrobial resistance was determined by disc diffusing test. The results were analyzed by chi-square test. Sera from 3,724 pigs of 264 herds were analyzed by mix-ELISA (Chekit&reg;). The ratios of positive herds and pigs were 44% and 10.1%, respectively. Multiple logistic regression analysis for the factors associated with Salmonella sero-prevalence was between geographic areas, types and size of herd. The Northern and Eastern areas had significantly higher prevalence than the Central, Southern, and off-shore, while there was no significant difference between 3 different herd types. The herd size smaller than 20 and larger than 2000 had higher prevalence than that of the herd size 21-500 and 501-2000. Further analyzing the grouping and microbial resistance of Salmonella isolated from fattening pigs, slaughtered pigs, and clinical septic Salmonellosis cases (mostly weaned pigs), it was found that S. Choleraesuis was the dominant strain isolated from clinical cases. Grouping of isolates from fattening pigs and abattoirs included group B and others, while group C1 was only found in abattoirs. Microbial resistance of the clinical cases was 78.5%, and of the healthy pigs from abattoirs and pig herds, 39.4% and 39.2%, respectively. The Salmonella isolated from sick pigs had substantially different serotypes and drug resistance as compared to that from farmed and slaughtered healthy pigs. Examination of 300 broilers and simulated native chickens (SNCs) revealed that liver and gall bladder from both breeds had higher isolation rate than that from cecal content. However, the isolation rate in SNCs was higher than that in broilers and each breed had different prevalent serovars. Three hundred and forty five strains were isolated from SNCs, of which the dominant isolate was S. Albany (47.2%), followed by S. Schwarzengrund (24.6 %). Two hundred and twenty five strains were isolated from broilers, while the isolation rate was similar between 3 dominant serovars (S. Albany-20%, S. Schwarzengrund-22.2% and S. Enteritidis-19.1%). Furthermore, most of the serovars isolated from broilers and SNCs showed multiple antimicrobial resistance. Notably, serovars isolated from SNCs had resistance to more than half of the antibiotics tested and the percent of serovars with antimicrobial resistance was higher than that from broilers. This investigation might serve as the basis for monitoring Salmonella in marketing chicken and the Salmonella contamination and infection of marketing SNCs should be surveyed continually. Finally, to investigate the possible factors underlying the high isolation rate of SNCs from live bird market, trials were conducted to analyze the effects of different time points and environments on isolation rate. The isolation rate, in time point test, from 6 hours after arrival group was 77.8%, which was remarkably higher than just-arrived group (13.9%) with an odds ratio of 21.7. The isolation rate, in environment test, from 6 hours and just-arrived groups were the same as time point test groups. Meanwhile, SNCs lairaged in a dark, clean and silent room for 6 hours after arrival, the isolation rate was as low as just-arrived group. These results suggested that a dark, clean and silent lairage process may minimize the stress of SNCs and reduce the bacterial isolation rate.en_US
dc.description.tableofcontents目 次 中文摘要 I 英文摘要 II 目次 IV 表次 VI 圖次 VII 第一章 緒言 1 第一節 前言 1 第二節 沙氏桿菌簡介 1 第三節 沙氏桿菌感染之檢驗法 6 第四節 家畜禽之沙氏桿菌感染症 10 第五節 各國之沙氏桿菌防治策略 14 第六節 WHO對沙氏桿菌訂定的三道防護規劃 15 第七節 沙氏桿菌的抗藥性 15 第二章 台灣地區2003年近上市豬隻沙氏桿菌血清學調查 18 第一節 摘要 18 第二節 緒言與實驗目的 18 第三節 材料與方法 19 第四節 結果 22 第五節 討論 25 第六節 附註說明 29 第三章 不同來源之豬隻沙氏桿菌流行病學調查: 探討台灣居民感染人畜共通沙氏桿菌症風險 30 第一節 摘要 30 第二節 緒言與實驗目的 30 第三節 材料與方法 30 第四節 結果 32 第五節 討論 33 第六節 附註說明 36 第四章 上市白肉雞與仿土雞之沙氏桿菌分離比較 37 第一節 摘要 37 第二節 緒言與實驗目的 37 第三節 材料與方法 38 第四節 結果 40 第五節 討論 46 第六節 附註說明 51 第五章 仿土雞在傳統市場之沙氏桿菌分離率 與時間及環境之關係 52 第一節 摘要 52 第二節 緒言與實驗目的 52 第三節 材料與方法 53 第四節 結果 54 第五節 討論 57 第六章 結論與展望 61 第一節 動機與目的之達成 61 第二節 豬隻部份之結論 62 第三節 雞隻部分之結論 62 第四節 後續的研究展望 63 參考文獻 65 附錄 72zh_TW
dc.language.isoen_USzh_TW
dc.publisher獸醫學系暨研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2301200911075000en_US
dc.subjectpigen_US
dc.subject沙氏桿菌zh_TW
dc.subjectchickenen_US
dc.subjectSalmonellaen_US
dc.subjectisolateen_US
dc.subjectserovaren_US
dc.subjectdrug resistanceen_US
dc.subjectzh_TW
dc.subjectzh_TW
dc.subject分離zh_TW
dc.subject血清型zh_TW
dc.subject抗藥性zh_TW
dc.title台灣上市期豬、雞沙氏桿菌之分離率、血清型分佈及抗藥性研究zh_TW
dc.titleStudy on Prevalence, Serovars and Antimicrobial Resistance of Salmonella Isolated from Marketing Pigs and Chickens in Taiwanen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:獸醫學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.