Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/13780
DC FieldValueLanguage
dc.contributor鄭豐邦zh_TW
dc.contributor吳應寧zh_TW
dc.contributor.advisor李衛民zh_TW
dc.contributor.advisorWei-Min Leeen_US
dc.contributor.author朱浡榛zh_TW
dc.contributor.authorChu, Po-Chenen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:51:15Z-
dc.date.available2014-06-06T06:51:15Z-
dc.identifierU0005-1308200912294200zh_TW
dc.identifier.citation夏偉堯。犬子宮積膿之荷爾蒙、臨床病理學、子宮菌相與血漿中基質金屬蛋白酵素2與9的變化。碩士論文。中華民國國立中興大學。台中市。台灣。2004。 吳冠倫。子宮內膜基質金屬蛋白酵素2與9之活性與血漿中內毒素及血管加壓素濃度於子宮積膿犬隻之變化。碩士論文。中華民國國立中興大學。台中市。台灣。2007。 Agah A, Kyriakides TR, Letrondo N, Bjorkblom B and Bornstein P. Thrombospondin 2 levels are increased in aged mice: consequences for cutaneous wound healing and angiogenesis. Matrix Biol. 22, 2004. Ancelin M, Buteau-Lozano H, Meduri G, Osborne-Pellegrin M, Sordello S, Plouët J, Perrot-Applanat M.A . Dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proc Natl Acad Sci .30;99(9):6023-8.2002 Basbaum CB, Werb Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol. 8:731–8, 1999. Beceriklisoy HB, Walter I, Schäfer-Somi S, Miller I, Kanca H, Izgür H, Aslan S. Matrix Metalloproteinase (MMP)-2 and MMP-9 Activity in the Canine Uterus Before and During Placentation. Reprod Domest Anim. 42(6):654-9, 2007. Birkedal-Hansen H. Matrix metalloproteinases: a review. Crit. Rev. Oral. Biol. 197–250, 1993. Bogaczewicz J, Dudek W, Zubilewicz T, Wroński J, Przywara S, Chodorowska G,Krasowska D. Akademia Medyczna The role of matrix metalloproteinases and their tissue inhibitors in angiogenesis. Pol Merkur Lekarski. 21(121):80-5, 2006. Bou¨ıs D, Kusumanto Y, Meijer C, Mulder NH, Hospers GAP. A review on proand anti-angiogenic factors as targets of clinical intervention. Pharmacol Res.53:89–103, 2006. Brenner RM, Rudolph L, Matrisian LM, Slayden OD. Non-human primate models: artificial menstrual cycles, endometrial matrix metalloproteinases and s.c. endometrial grafts. Hum Reprod .11(Suppl 2):150–164, 1996. Brinckerhoff, C. E. & Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol. 3, 207–214, 2002. Burger NZ, Kuzina OY, Osol G, Gokina NI.Estrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca2+.Am J Physiol Endocrinol Metab. 296(3):E503-12, 2009. Christodoulakos GE, Panoulis CP, Lambrinoudaki IV, Botsis DS, Dendrinos SG, Economou E, Creatsas GC. The effect of hormone therapy and raloxifene on serum matrix metalloproteinase-2 and -9 in postmenopausal women. Menopause. 11(3):299-305, 2004. Chu PY, Salamonsen LA, Lee CS and Wright PJ. Matrix metalloproteinases (MMPs) in the endometrium of bitches. Reproduction. 123, 467–477, 2002. Chung AS, Kao WJ. Fibroblasts regulate monocyte response to ECM-derived matrix: the effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A. 89(4):841-53, 2009. Chung AS, Kao WJ. Fibroblasts regulate monocyte response to ECM-derived matrix: the effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A. 89(4):841-53, 2009. Corcoran ML, Hewitt RE, Kleiner DE, Stetler-Stevenson WG. MMP-2: expression, activation and inhibition. Enzyme Protein.49:7–19, 1996. Cornet PB, Galant C, Eeckhout Y, Courtoy PJ, Marbaix E, Henriet P. Regulation of matrix metalloproteinase-9/gelatinase B expression and activation by ovarian steroids and LEFTY-A/endometrial bleeding-associated factor in the human endometrium. J Clin Endocrinol Metab 90:1001-1011, 2005. Cox KE, Sharpe-Timms KL, Kamiya N, Saraf M, Donnelly KM, Fazleabas AT. Differential regulation of stromelysin-1 (matrix metalloproteinase-3) and matrilysin (matrix metalloproteinase-7) in baboon endometrium. J Soc Gynecol Investig 7:242–248, 2000. Curry TE Jr, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle.Endocr Rev. Aug. 24(4):428-65, 2003. De Cock H, Ducatelle R, Logghe JP. Immunohistochemical localization of estrogen receptor in the normal canine female genital tract. Dom Anim Endocrinol 14:133–147, 1997. De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–91, 1992. Dhaliwal GK, England GC, Noakes DE. Immunocytochemical localization of estrogen and progesterone receptors in the uterus of the normal bitch during oestrus and metoestrus. J Reprod Fertil. 51:167–176, 1997. Donnay I, Wouters-Ballman P, Devleeschouwer N, Leclercq G, Verstegen J. Changes in oestrogen, progesterone and epidermal growth factor receptor concentrations and af finities during the oestrous cycle in the normal mammary gland and uterus of dogs. Vet Res Com. 19:101–113, 1995. Eble JA, Niland S. The extracellular matrix of blood vessels. Curr Pharm. (12):1385-400, 2009. Fadini GP, Albiero M, Boscaro E, Agostini C, Avogaro A. Endothelial progenitor cells as resident accessory cells for post-ischemic angiogenesis. Atherosclerosis. 204(1):20-2. Epub, 2009. Fowlkes JL, Thrailkill KM, Serra DM, Suzuki K, and Nagase H. Matrix metalloproteinases as insulin-like growth factor binding protein-degrading proteinases. Prog. Growth Factor Res. 6, 255–263, 1995. Fraser HM, Duncan WC.SRB Reproduction, Fertility and Development Award Lecture Regulation and manipulation of angiogenesis in the ovary and endometrium. Reprod Fertil Dev. 21(3):377-92, 2008. Gibson TC, Phernetto TM, Wiltbank MC and Magness RR. Development and use of an ovarian synchronization model to study the effects of endogenous estrogen and nitric oxide on uterine blood flow during ovarian cycles in sheep, Biol Reprod. 6-70 1886–1894, 2004. Goffin F, Munaut C, Frankenne F, Perrier D''Hauterive S, Béliard A, Fridman V, Nervo P, Colige A, Foidart JM. Expression pattern of metalloproteinases and tissue inhibitors of matrix-metalloproteinases in cycling human endometrium. Biol Reprod. 69:976-984, 2003. Goldman S, Lovett DH, Shalev E. Mechanisms of matrix metalloproteinase-2 (mmp-2) transcriptional repression by progesterone in jar choriocarcinoma cells. Reprod Biol Endocrinol. 9;7:41, 2009. Goldman S, Shalev E. Difference in progesterone-receptor isoforms ratio between early and late first-trimester human trophoblast is associated with differential cell invasion and matrix metalloproteinase 2 expression. Biol Reprod. 74:13-22, 2006. Goto T, Endo T, Henmi H, Kitajima Y, Kiya T, Nishikawa A, Manase K, Sato H and Kudo R. Gonadotropin-releasing hormone agonist has the ability to induce increased matrix metalloproteinase (MMP)-2 and membrane type 1-MMP expression in corpora lutea, and structural luteolysis in rats. J Endocrinol. 161(3):393-402, 1999. Gross J. and Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl Acad. Sci. 47, 1014–1022, 1962. Hamano, Y. Physiological levels of tumstatin, afragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αV β3 integrin. Cancer Cell. 3, 589–601, 2003. Honkavuori M, Talvensaari-Mattila A, Puistola U, Turpeenniemi-Hujanen T, Santala M. High serum TIMP-1 is associated with adverse prognosis in endometrial carcinoma. Anticancer Res.28(5A):2715-9.2008 Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 3:27–45, 1997. Jeffrey JJ, Gross J. Collagenase from rat uterus. Isolation and partial characterization. Biochemistry. 9:268–273, 1970. Jeon SH, Chae BC, Kim HA, Seo GY, Seo DW, Chun GT, Kim NS, Yie SW, Byeon WH, Eom SH, Ha KS, Kim YM, Kim PH. Mechanisms underlying TGF-beta1-induced expression of VEGF and Flk-1 in mouse macrophages and their implications for angiogenesis. J Leukoc Biol. 81(2):557-66, 2007. Jung K, Lein M, Laube C and Lichtinghagen R: Blood specimen collection methods influence the concentration and the diagnostic validity of matrix metalloproteinase 9 in blood. Clin Chim Acta. 314: 241-244, 2001. Klagsbrun M, Moses MA. Molecular angiogenesis. Chem Biol. 6:217–24, 1999. Kuvaja P, Talvensaari-Mattila A and Turpeenniemi-Hujanen T. The sample type used affects the levels of gelatinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in circulating blood of healthy controls and breast cancer patients. Biomarker Insights 2: 117-127, 2007. Kyriakides TR, Wulsin D, Skokos EA, Fleckman P, Pirrone A, Shipley JM, Senior RM, Bornstein P.Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol 28(2):65-73, 2009. Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EF. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation. 1; 94(5):1074-82, 1996. Lee S, Jilani, SM, Nikolova, GV, Carpizo, D. and Iruela-Arispe, ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell. Biol. 169,681–691, 2005. Leppä S, Saarto T, Vehmanen L, Blomqvist C and Elomaa I: A high serum matrix metalloproteinase-2 level is assosiated with an adverse prognosis in node-positive breast carcinoma. Clin Cancer Res. 10: 1057-1063, 2004. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physio . 88:887-918, 2008. Luksha L, Agewall S, Kublickiene K.Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis. 202(2):330-44, 2008. Luo D, Mari B, Stoll I and Anglard P. Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J. Biol. Chem. 277, 25527–25536, 2002. Magness RR and Rosenfeld CR. The role of steroid hormones in the control of uterine blood flow. The uterine circulation, Perinatology Press. 239–271, 1989. Magness RR, Phernetton TM, Gibson TC and Chen DB. Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17beta-treated, intact follicular and pregnant sheep, J Physiol. 565, 71–83, 2005. Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM. The Hemopexin Domain of Matrix Metalloproteinase-9 Activates Cell Signaling and Promotes Migration of Schwann Cells by Binding to Low-Density Lipoprotein Receptor-Related Protein. J Neurosci. 5; 28(45):11571-82, 2008. Mariani TC, do Prado C, Silva LG, Paarmann FA, Lima MC, Carvalho I, Campos DB, Artoni LP, Hernandez-Blazquez FJ, Papa PC. Immunohistochemical localization of VEGF and its receptors in the corpus luteum of the bitch during diestrus and anestrus. Theriogenology. 66(6-7):1715-20, 2006. McQuibban GA. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508, 2001. Mirastschijski CJ, Haaksma JJ, Tomasek and Agren MS, Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds, Exp. Cell Res. 465-475, 2004. Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L.Antiangiogenic effects of flavonoids and chalcones.Pharmacol;57(4):259-65. Epub, 2008. Murphy G, Docherty AJP. The matrix metalloproteinases and their inhibitors. Am J Resp Cell Mol Biol.7:120–5, 1992. Nagase H. Activation mechanism of matrix metalloproteinases. Biol Chem. 378:151–60, 1997. Nuttall RK, Kennedy TG. Gelatinases A and B and tissue inhibitors of metalloproteinases 1, 2, and 3 during in vivo and in vitro decidualization of rat endometrial stromal cells. Biol Reprod. 60:471–478, 1999. Overall CM. Molecular determinants ofmetalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 22, 51–86, 2002. Page-McCaw AJ, Ewald and Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling. Nat. Rev. Mol. Cell Biol. 221-233, 2007. Pages G, Milanini J, Richard DE, Berra E, Gothie E, Vinals F, Pouyssegur J. Signalling angiogenesis via p42/p44 MAP kinase cascade. Ann NY Acad Sci. 902:187–200, 2000. Paquette B, Bisson M, Therriault H, Lemay R, Pare M, Banville P, Cantin AM. Activation of matrix metalloproteinase-2 and -9 by 2- and 4-hydroxyestradiol. J Steroid Biochem Mol Biol. 87, 65–73, 2003. Pasterkamp G, Schoneveld AD, Hijnen DJ, de Kleijn DP, Teepen H, van der Wal AC, Borst C. Atherosclerotic arterial remodelling and the localization of macrophages and matrixmetalloproteinases 1, 2 and 9 in the human coronary artery. Atherosclerosis.150:245–53, 2000. Pepper MS. Role of matrix metalloproteinase and plasminogen activatorplasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 21:1104–17, 2001. Polavarapu R, Gongora MC, Yi H, Ranganthan S, Lawrence DA, Strickland D, Yepes M. Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood. 109:3270-3278, 2007. Quinn KA, Grimsley PG, Dai YP, Tapner M, Chesterman CN, Owensby DA . Soluble low density lipoprotein receptor-related protein (LRP) circulates in human plasma. J Biol Chem 272:23946-23951, 1997. Quinn KA, Pye VJ, Dai YP, Chesterman CN, Owensby DA. Characterization of the soluble form of the low density lipoprotein receptor-related protein (LRP). Exp Cell Res. 251:433-441 19, 1999. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease.Biochem Pharmacol.15; 75(2):346-59, 2008. Rehm S, Stanislaus DJ, Williams AM. Estrous cycle-dependent histology and review of sex steroid receptor expression in dog reproductive tissues and mammary gland and associated hormone levels.Birth Defects Res B Dev Reprod Toxicol. 80(3):233-45, 2007. Rigot V, Marbaix E, Lemoine P, Courtoy PJ, Eeckhout Y. In vivo perimenstrual activation of progelatinase B (proMMP-9) in the human endometrium and its dependence on stromelysin 1 (MMP-3) ex vivo. Biochem J.358:275-280, 2001. Rozanov DV, Hahn-Dantona E, Strickland DK, Strongin AY. The low densitylipoprotein receptor-related protein LRP is regulated by membrane type-1 matrixmetalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem. 279:4260-4268, 2004. Rudolph-Owens L, Hulboy DL, Wilson CL, Mudgett J, Matrisian LM. Coordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-1-deficient mice. Endocrinology. 138:4902–4911, 1997. Rudolph-Owens L, Slayden OD, Matrisian LM, Brenner RM. Matrix metalloproteinase expression in Macaca mulatta endometrium: evidence for zone-specific regulatory tissue gradients. Biol Reprod. 59:1349–1359, 1998. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 9:267–85, 2005. Salamonsen LA, Butt A, Hammond FR, Garcia S, Zhang J. Production of endometrial matrix metalloproteinases, but not their tissue inhibitors, is modulated by progesterone withdrawal in an in vitro model for menstruation. J Clin Endocrinol Metab. 82:1409–1415, 1997. Salamonsen LA, Lathbury LJ. Endometrial leukocytes and menstruation. Hum Reprod Update. 6:16–27, 2000. Schäfer-Somi S, Ali Aksoy O, Patzl M, Findik M, Erünal-Maral N, Beceriklisoy HB, Polat B, Aslan S.The activity of matrix metalloproteinase-2 and -9 in serum of pregnant and non-pregnant bitches. Reprod Domest Anim. 40(1):46-50, 2005. Schroen DJ, Brinckerhoff CE. Nuclear hormone receptors inhibit matrix metalloproteinase (MMP) gene expression through diverse mechanisms. Gene Expr. 6(4):197-207, 1996. Selvais C, Gaide Chevronnay HP, Lemoine P, Dedieu S, Henriet P, Courtoy PJ, Marbaix E, Emonard H. Metalloproteinase-dependent shedding of LRP-1 ectodomain decreases endocytic clearance of endometrial matrix metalloproteinases-2 and -9 at menstruation. Endocrinology. April, 2009. Senft, AP, Korfhagen, TR, Whitsett, JA, Shapiro, SD & LeVine, AM. Surfactant protein-D regulates soluble CD14 through matrix metalloproteinase-12. J. Immunol. 174, 4953–4959, 2005. Singer C, Marbaix E, Lemoine P, Courtoy PJ, Eeckhout Y. Local cytokines induce differential expression of matrix metalloproteinases but not their tissue inhibitors in human endometrial fibroblasts. Eur J Biochem. 259:40–45, 1999. Sprague BJ, Phernetton TM, Magness RR, The effects of the ovarian cycle and pregnancy on uterine vascular impedance and uterine artery mechanics. Eur J Obstet Gynecol Reprod Biol.144 Suppl 1:S170-8, 2009. Stettner R, Bogusiewicz M, Rechberger T.Matrix metalloproteinases and their inhibitors in ovarian cancer progression--diagnostic and therapeutic implications. Ginekol Pol. 80(1):47-53, 2009. Stocker, W. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science. 4, 823–840, 1995. Streuli, C. Extracellular matrix remodelling and cellular differentiation. Curr. Opin. Cell. Biol. 11,634–640, 1999. Suhr F, Brixius K, Bloch W.Angiogenic and vascular modulation by extracellular matrix cleavage products. Curr Pharm. 15(4):389-410, 2009. Talvensaari-Mattila A, Pääkkö P and Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 (MMP-2) is associated with survival in breast carcinoma. Br J Cancer. 89: 1270-1275, 2003. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 187:1579–86, 1992. Van Veen HA, Peereboom-Stegeman JHJC. The influence of the estrous cycle on the volume density and appearance of collagen containing vacuoles in fibroblasts of the rat uterus. Virchows Arch A Pathol Anat Histopathol. 53:23–31, 1987. Vassalli J-D, Sappino AP, Belin D. The plasminogen activator/plasmin system.J Clin Invest. 88:1067–72, 1991. Vermeirsch H, Simoens P, Hellemans A, Coryn M, Lauwers H. Immunohistochemical detection of progesterone receptors in the canine uterus and their relation to sex steroid hormone levels. Theriogenology. 53:773–788, 2000. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases: structure, function, and biochemistry. Circ Res. 92:827–39, 2003. Wang, Z., Juttermann, R. & Soloway, P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411–26415, 2000. Welgus, H. G., Kobayashi, D. K. & Jeffrey, J. J. The collagen substrate specificity of rat uterus collagenase. J. Biol. Chem. 258, 14162–14165, 1983. Whitelock, J. M., Murdoch, A. D., Iozzo, R. V.and Underwood, P. A. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 10079–10086, 1996. Wilson CL, Heppner KJ, Labosky PA, Hogan BLM, Matrisian LM. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci. 94:1402–14073, 1997. Zhang J, Hampton AL, Nie G, Salamonsen LA. Progesterone inhibits activation of latent matrix metalloproteinase (MMP)-2 by membrane-type 1 MMP: enzymes coordinately expressed in human endometrium. Biol Reprod. 62:85–94, 2000. Zhang X, Nothnick WB.The role and regulation of the uterine matrix metalloproteinase system in menstruating and non-menstruating species. Front Biosci. 10:353-66, 2005. Zhou L, Yan C, Gieling RG, Kida Y, Garner W, Li W, Han YP.Tumor necrosis factor-alpha induced expression of matrix metalloproteinase-9 through p21-activated kinase-1. BMC Immunol. 2009.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/13780-
dc.description.abstract摘要 基質金屬蛋白酵素(matrix metalloproteinases, MMPs)為一功能性蛋白酵素,不同的基質金屬蛋白酵素能降解細胞外基質,改變組織型態。人類女性月經週期變化中,子宮內膜組織有顯著地增加或減少,同時觀察到也會在不同時期顯著地增加或是消失。這些特殊的MMPs在月經週期裡調控子宮內模組織的斷裂和重塑。在產後的母犬子宮組織中,MMP-9擔負起子宮復舊的重要角色。本研究主題在於自然環境下犬之子宮內膜及血漿中MMPs變化和血液荷爾蒙的相關性。我們採取被施行子宮卵巢摘除手術之健康母犬術前及術後的血液和子宮卵巢組織,經過萃取和離心樣本後,利用sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE)偵測子宮內膜及血漿中MMP-2及MMP-9活性,並偵測血漿中雌二醇和黃體酮的濃度。結果顯示術前血漿proMMP-2和MMP-9活性變化會隨著雌二醇濃度不同而改變,且術前血漿proMMP-2和MMP-9和雌二醇濃度有顯著的正相關(p<0.05)。同時,發情前期術前血漿MMP-2的活性表現顯著高於無發情期和晚期發情間期(p<0.05)。而在早期發情間期,子宮內膜MMP-和MMP-2的活性表現顯著高於發情前期和發情期(p<0.05)。儘管子宮內膜MMP-2和MMP-9的活性和雌二醇、黃體酮濃度呈現負相關,但彼此的相關程度十分微弱。最後,應用zymography能偵測犬在發情周期中,血漿以及子宮內膜MMP-9和MMP-2的活性表現,並探討其變化。本研究結果顯示雌二醇和黃體酮間接透過其他路徑影響子宮內膜基質細胞表現MMP-9和MMP-2,而血漿MMP-2和MMP-9與雌二醇分泌的相關性能反映雌二醇影響細胞分泌MMP-2和MMP-9,影響血漿中MMP-2和MMP-9的含量。zh_TW
dc.description.abstractAbstract Esrus cycle of human menstruation, the endometrium shows a significantly increment of the expression of a matrix metalloproteinases (MMPs). Several MMPs are involved in the regulating the breakdown and the remodeling of the endometrium throughout the menstrual cycle. Despite, in the postpartum dog, MMPs are involved with uterine remodeling and MMP-9 activities during placentation extend in the endometrium. The aim of this study was to observe the endometrium and plasma activity of matrix metalloproteinases and hormones during different estrus phase. Blood samples and uterine were collected from healthy bitches while before and after ovariohysterectomy. After extraction and centrifuge, the endometrium and plasma activity of MMP-2 and MMP-9 determined by sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE) and the concentrations of estradiol and progesterone were detected, too. The results of this study indicated plasma proMMP-2 and totalMMP-9 activity before surgery change with the estrodiol change. The activity of proMMP-2 and MMP-9 were positive correlation with the estrodiol (p<0.05). Likewise, plasma MMP-2 in proestrous period before surgery was significantly higher than anestrous and late-metestrous (p<0.05). Otherwise, the activity of MMP-9 and MMP-2 in endometrium are higher in early metestrous than in proestrous and estrous (p<0.05). The correlation between endometrial MMP-2, 9 and estrodiol is negative. And the correlation between endometrial MMP-2, 9 and progestrone is negative, too. Nevertheless, the correlation strength of them is weak. In conclusion, the activity of plasma and endometrial MMP-2, 9 can be detected by zymography in estrous cycle. The result indicated E2 and P4 may not affect endometrial stoma cell directly, but plasma MMP-2 and MMP-9 were associated with estrogen secretion which can reflect the signal transferring expression of MMPs.en_US
dc.description.tableofcontents目錄 目錄....................................................................................................................................i 表次..................................................................................................................................iv 圖次...................................................................................................................................v 中文摘要.........................................................................................................................vii 英文摘要........................................................................................................................viii 第一章 前言...................................................................................................................1 第二章 文獻探討.......................................................................................................... 2 第一節 基質金屬蛋白酵素...................................................................................2 一、 基質金屬蛋白酵素發現...................................................................2 二、 基質金屬蛋白酵素結構...................................................................2 三、 基質金屬蛋白酵素作用方式...........................................................6 第二節 基質金屬蛋白酵素在雌性生殖系統的角色........................................9 第三節 基質金屬蛋白酵素在犬之子宮內膜的研究.......................................11 第四節 血管新生作用......................................................................................12 第三章 材料與方法.....................................................................................................15 第一節 子宮內膜之收集與保存......................................................................16 一、 樣本來源與篩選.............................................................................16 二、 卵巢子宮摘除術.............................................................................16 三、 子宮卵巢組織之處理.....................................................................17 第二節 血漿之收集與保存..............................................................................17 第三節 發情週期判定………………………..................................................17 一、 臨床觀察………………...................................................................17 二、 血漿中黃體酮變化及組織學觀察...................................................18 三、 子宮及卵巢組織學……………………………………...………....19 第四節 子宮內膜受質凝膠電泳分析..............................................................21 一、 子宮內膜組織中金質金屬蛋白酵素樣本之製備.......................21 二、 Gelatin電泳膠片製備...................................................................21 三、 子宮內膜受質凝膠電泳...............................................................21 四、 條帶分析.......................................................................................22 第五節 血漿受質凝膠電泳分析......................................................................22 一、 血漿中基質金屬蛋白酵素樣本之製備...............................................22 第六節 血漿雌二醇之測定..............................................................................23 第七節 血漿黃體酮之測定..............................................................................23 第八節 統計分析..............................................................................................23 第四章 結果.................................................................................................................24 第一節 犬隻基本資料分析..............................................................................24 第二節 發情周期中雌二醇及黃體酮的變化..................................................26 第三節 血漿中基質金屬蛋白酵素2與9之變化............................................27 一、 子宮卵巢摘除術前之血漿中基質金屬蛋白酵素2與9變化…..27 二、 發情周期中血漿基質金屬蛋白酵素2及9 的變化......................28 三、 子宮卵巢摘除術前後之血漿基質金屬蛋白酵素2及9 的比較..32 第四節 子宮內膜中基質金屬蛋白酵素2及9的變化……...........................35 一、 發情周期中子宮內膜基質金屬蛋白酵素2及9 的變化..….…...36 二、 術前血漿中基質金屬蛋白酵素2及9與子宮內膜中的基質金屬蛋白酵素2及9比較………….…………...…………….………...…38 第五章 討論.................................................................................................................46 第一節 實驗犬隻在年齡、體重與品種分佈.....................................................46 第二節 血漿中的基質金屬蛋白酵素在動情週期的變化...............................46 一、 血漿中的基質金屬蛋白酵素偵測和影響偵測因子.....................46 二、 術前血漿中的基質金屬蛋白酵素變化.........................................48 三、 術後血漿基質金屬蛋白酵素的變化….……..…...……….….….48 四、 血管新生作用影響循環中的基質金屬蛋白酵素…..…...………50 第三節 術後血漿基質金屬蛋白酵素的變化…….….…….…………....…....51 一、 術後引起的組織修復連鎖反應…….….………..…………….…51 二、 血漿基質金屬蛋白酵素9在受創組織修復的角色..……..…......52 第四節 子宮內膜中基質金屬蛋白酵素的表現………………...……………53 一、 子宮內膜中基質金屬蛋白酵素的表現量……..…….….....….....53 二、 黃體酮藉由雌二醇受體及黃體酮受體調控基質金屬蛋白酵素.53 三、 調控子宮內膜中基質金屬蛋白酵素2的因子…..........………….55 第六章 附錄.................................................................................................................57 第七章 參考文獻.........................................................................................................60 表次 表3-1:卵巢及子宮組織的組織………………………………...…………..…………19 表4-1:術前血漿MMP-2與MMP-9於發情周期數據...............................................42 表4-2:術後血漿MMP-2與MMP-9於發情周期數據..................................................42 表4-3:子宮內膜MMP-2與MMP-9於發情周期數據..................................................42 表4-4:雌二醇、黃體酮於發情周期數據.......................................................................42 表4-5:發情周期中術前、術後血漿及子宮內膜MMP-2與MMP-9的相關性...............43 表4-6:無發情期中術前、術後血漿及子宮內膜MMP-2與MMP-9的相關性………...43 表4-7:發情前期中術前、術後血漿及子宮MMP-2與MMP-9的相關性……………...44 表4-8:發情期術前、術後血漿及子宮內膜MMP-2與MMP-9的相關性…………..….44 表4-9:早期發情間期術前、術後血漿及子宮內膜MMP-2與MMP-9的相關性……...45 表4-10:晚期發情間期術前、術後血漿及子宮內膜MMP-2與MMP-9的相關性.…....45 圖次 圖2-1:基質金屬蛋白酵素的結構圖...............................................................................4 圖2-2:調控MMPs的方式……………………..….………..............................................5 圖2-3:MMPs降解細胞外基質……………….................................................................6 圖2-4:MMPs降解細胞外基質後產生訊號傳遞物質.....................................................7 圖2-5:MMPs降解細胞間鍵結和基底膜.......................................................................7 圖2-6:MMPs激活隱性訊號因子……………................................................................8 圖2-7:MMPs降解活性訊號因子…………………….....................................................8 圖2-8:血管形成過程中的各步驟.................................................................................14 圖3-1、研究系統…….…………...……..……...............................................................15 圖4-1:品種分佈圖…………………………………………………………...…..……24 圖4-2:樣本年齡柱狀圖……………………………………...…………………….….24 圖4-3:樣本體重圖……………………………………………………...………..……25 圖4-4:樣本發情週期柱狀圖……………………...…………………………………..25 圖4-5:發情周期中雌二醇及黃體酮的變化………………………………….…….26 圖4-6:以受質凝膠電泳分析血漿中基質金屬蛋白酵素9及2的活性表現……...…27 圖4-7:術前血漿中proMMP-9不同發情週期下的變化量……………...…………...28 圖4-8:術前血漿中MMP-9不同發情週期下的變化量………………………………28 圖4-9:術前血漿中proMMP-2不同發情週期下的變化量…………...……………...29 圖4-10:術前血漿中MMP-2不同發情週期下的變化量……………………………..29 圖4-11:術後血漿中proMMP-9在不同發情周期的變化…………………………….30 圖4-12:術後血漿中MMP-9在不同發情周期的變化……….….…………..………..30 圖4-13:術後血漿中proMMP-2在不同發情周期下的變化……………………….31 圖4-14:術後血漿中MMP-2在不同發情周期的變化………………………………..31 圖4-15:子宮卵巢摘除術前後之血漿中基質金屬蛋白酵素2及9 的比較……...….32 圖4-16:發情周期中術前及術後的血漿中proMMP-9的比較…………...………….33 圖4-17:發情周期中術前及術後的血漿中MMP-9的比較……………....…………..33 圖4-18:發情周期中術前及術後血漿中proMMP-2的比較……………..…….…….34 圖4-19:發情周期中術前及術後的血漿中MMP-2的比較…………..……..………..34 圖4-20:子宮內膜中基質金屬蛋白2及9的表現量…………...……………………..35 圖4-21:以受質凝膠電泳分析子宮內膜中基質金屬蛋白酵素9及2的活性表現.....35 圖4-22:子宮內膜中proMMP-9在發情周期的變化………………..………….…….36 圖4-23:子宮內膜中MMP-9在發情周期的變化…….………………….……..……..36 圖4-24:子宮內膜中proMMP-2在發情周期的變化……………..…………….…….37 圖4-25:子宮內膜中MMP-2在發情周期的變化…………..………………..………..37 圖4-26:術前血漿中proMMP-9及術前內膜中proMMP-9在發情周期的表現..…...38 圖4-27:術前血漿中proMMP-9及術前內膜中proMMP-9的相關性………...……..38 圖4-28:術前血漿中MMP-9和術前內膜中MMP-9在發情周期的表現……..….….39 圖4-29:術前血漿中MMP-9和術前內膜中MMP-9的相關性……….…………..….39 圖4-30:內膜中proMMP-2和術前血漿中proMMP-2在發情周期的表現……...…..40 圖4-31:內膜中proMMP-2和術前血漿中proMMP-2的相關性……..………….…..40 圖4-32:子宮內膜MMP-2和術前血漿MMP-2在不同周期的表現量…..……….….41 圖4-33:子宮內膜MMP-2和術前血漿MMP-2的相關……..……………….……….41zh_TW
dc.language.isoen_USzh_TW
dc.publisher獸醫學系暨研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308200912294200en_US
dc.subjectcanineen_US
dc.subjectzh_TW
dc.subjectMMP-2en_US
dc.subjectMMP-9en_US
dc.subjectestrous cycleen_US
dc.subjectplasmaen_US
dc.subjectendometriumen_US
dc.subject基質金屬蛋白酵素2zh_TW
dc.subject基質金屬蛋白酵素9zh_TW
dc.subject動情週期zh_TW
dc.subject血漿zh_TW
dc.subject子宮內膜zh_TW
dc.title犬之血漿及子宮內膜中基質金屬蛋白酵素2與9於發情周期之活性表現zh_TW
dc.titleThe activity of MMP-2 and MMP-9 in plasma and endometrium of dogs during estrous cycleen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:獸醫學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.