Please use this identifier to cite or link to this item:
標題: 黃連素對高脂飼料及鏈佐菌素 (streptozotocin)誘發之糖尿病大鼠胰島素分泌之影響
The Effects of Berberine on Insulin Secretion in High-Fat Diet- and STZ-Induced Diabetic Rats
作者: 郭俊成
Kuo, Chun-Cheng
關鍵字: Berberine;黃連素;high-fat diet;STZ-induced diabetic rats;beta-receptor;高脂飼料;STZ糖尿病大白鼠;腎上腺beta接受器
出版社: 獸醫學系暨研究所
引用: 王忠漢 (2008)。黃連素對大白鼠胰臟分泌胰島素之影響。中興大學獸醫學系碩士班碩士論文。 朱靜維(2004)。黃連素在臨床上的新用途。西藏科技。 Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18: 6104-6111, 1999. American diabetes association. Diagnosis and classification of diabetes mellitus. Diabetes Care 28: S37-S42, 2005. Arayen MS, Sultana N, Bahadur SS. The berberis story: berberis vulgaris in therapeutics. Pak J Pharm Sci 20: 83-92, 2007. Arcaro A, Wymann MP. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3, 4, 5-trisphosphate in neutrophil responses. Biochem J 296: 297-301, 1993. Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL. Neonatal sreptozotocin-induced rat model of type 2 diabetes mellitus: A glance. Indian J Pharmacol 36: 217-221, 2004. Ashcroft FM, Rorsman P. Electrophysiology of thepancreatic beta-cell. Prog Biophys Mol Biol 54: 87-143, 1989. Aspinwall CA, Lakey JRX, Kennedy RT. Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem 274:6360–6365, 1999. Avruch J. Insulin signal transduction through protein kinase cascades. Molecular and cellular biochemistry 182: 31–48, 1998. Bijlstra PJ, Lutterman JA, Russel FG, Thien T, Smits P. Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans. Diabetologia 39: 1083-90, 1996. Boden G, Chen X, Iqbal N. Acute lowering of plasma fatty acids lowers basal insulin secretion in diabetic and nondiabetic subjects. Diabetes 47: 1609-1612, 1998. Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 88: 960–966, 1991. Boden G and Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Investig 32: 14-23, 2002. Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105: 429-435, 1984. Buhl ES, Jessen N, Pold R, Ledet T, Flyvbjerg A, Pedersen SB, et al. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51: 2199-2206, 2002. Butler, AE. beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102-110, 2003. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29: 222-230, 2000. Ceriello A and Motz E. Is oxidative Sstress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24: 816-823, 2004. Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Canadian Medical Association Journal 172: 213-26, 2005. Cheng Z, Pang T, Gu M, Gao AH, Xie CM, Li JY, Nan FJ, Li J. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta 1760: 1682-1689, 2006. Clee SM, Attie AD.The genetic landscape of type 2 diabetes in mice. Endor Rev 28: 48-83, 2007. Dai DZ, Hu HJ, Zhao Jing, Hao XM, Yang DM, Zhou PA, Wu CH. Blockade of L-type calcium channel in myocardium and calcium-induced contractions of vascular smooth muscle by CPU 86017. Acta Pharmacol Sin 25: 416-423, 2004. Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 47: 1613-1618, 1998. Dodson G, Steiner D. "The role of assembly in insulin''s biosynthesis". Curr Opin Struct Biol 8: 189-94, 1998. Doyle ME and Egan JM. Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 55: 105-131, 2003. Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 26: 2929-2940, 2003. Evans JL, Goldfine IRAD, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocr Rev 23: 599-622, 2002. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress activate signaling pathways mediator of insulin resistance and b-cell dysfunctions? Diabetes 52: 1-8, 2003. Furtado LM, poon V, Klip A. GLUT4 activation: thoughts on possible mechanisms. Acta Physiol Scand 178: 287-296, 2003. Ganong WF. Endocrine functions of the pancreas & regulation of carbohydrate metabolism. In Riew of medical physiology. 18th ed., W.F. Ganong (ed.), Appleton & Lange, Stamford, Connecticut, USA, pp. 324-326, 1997. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48: 1270-1274, 1999. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature 9: 367-377, 2008. Harding HP and Ron David. Endoplasmic reticulum stress and the development of diabetes. A review. Diabetes 51: S455-S461, 2002. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28, 2003. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 47 : 1369-1373,1998. Hu Y, Davies GE. Berberine increases expression of GATA-2 and GATA-3 during inhibition of adipocyte differentiation. Phytomedicine 16: 864-873, 2009. Huang C, Zhang Y, Gong Z, Sheng X, Li Z,Zhang W, Qin Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARγ pathway. Biochem Biophys Res Commun 348: 571 – 578, 2006. Hubert A, Husson A, Chedeville A, Lavoinne A. AMP-activated protein kinase counteracted the inhibitory effect of glucose on the phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes. FEBS Lett 481: 209-212, 2000. Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA, Baba O, Terashima T, Hardie DG. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13: 861-866, 2003. Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 51: 2886-2294, 2002. Kahn, SE. The relative contributions of insulin resistance and β-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46: 3-19, 2003. Kamon J, Yamauchi T, Mutoc S, Takekawa S, Itoa Y, Hadaa Y, Ogawad W, Itaic A, Kasugad M, Tobea K, Kadowakia T. A novel IKKbeta inhibitor stimulates adiponectin levels and ameliorates obesity-linked insulin resistance. Biochemical and Biophysical Research Communications 323: 242-248, 2004. Khatib OMN. Guidelines for the prevention, management and care of diabetes mellitus. World Health Organization, EMRO Technical Publications Series 32: 1-82, 2006. Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S. Insulin sensitizing and insulinotropic action of berberine form cortidis rhizoma. Biol Pharm Bull 28: 1431-1437, 2005. Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M. Expanding role of AMPK in endocrinology. Trends Endocrinol Metab 17: 205-215, 2006. Langtry HD, Balfour JA. Glimepiride: a review of its use in the management of type 2 diabetes mellitus. Drugs 55: 563–584, 1998. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin 25: 496 -502, 2004. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51: 216-226, 2008. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistance states. Diabetes 55: 2256-2264, 2006. Ligon B, Boyd AE, Dunlap K. Class A calcium channel variants in pancreatic islets and their role in insulin secretion. J Biol Chem 273: 13905-13911, 1998. Magnelli V, Avaltroni A, Carbone E. A single non-L-, non-N-type Ca2+ channel in rat insulin-secreting RINm5F cells. Pfluegers Arch 431: 341-452, 1996. Mcleod JF. Clinical pharmacokinetics of nateglinide: a rapidly-absorbed, short-acting insulinotropic agent. Clin Pharmacokinet 43: 97-120, 2004. Mears D. Regulation of insulin secretion in islets of Langerhans by Ca2+ channels. J. Membrane Biol 200: 57-66, 2004. Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 908: 219-225, 2000. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning AM, Rao. A IKK-1 and IKK-2: cytokine-activated IkkB kinases essential for NF-kB activation. Science 278: 860-866, 1997. Misler S, Barnett DW, Gillis K.D, Pressel DM. Electrophysiology of stimulus-secretion coupling in human beta cells. Diabetes 41: 1221-1228, 1992. Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in Vitro. J Biol Chem 281: 25336-25343, 2006. Murata, M, Takahashi A,Saito I, and Kawanishi S. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol. 57: 881-887, 1999. Özcan U, Cao O, Yilmaz E, Lee AH, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligi GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457-461,2004. Pan GY, Huang ZJ, Wang GJ, Fawcett JP, Liu XD, Zhao XC, Sun JG, Xie YY. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med 69: 632-636, 2003. Paquot N, Scheen AJ, Dirlewanger M, Lefe`bvre PJ, Tappy L. Hepatic insulin resistance in obese non-diabetic subjects and in type 2 diabetic patients. Obes Res 10: 129-134, 2002. Punitha ISR, Shirwaikar A, Shirwaikar A. Antidiabetic activity of benzyl tetra isoquinoline alkalpid berberine in streptozotocin-nicotinamide induced type 2 diabetic rats. Diabetologia Croatica: 34-4, 2005. Rajan SS, Srinivasan V, Balasubramanyam M, Tatu U. Endoplasmic reticulum (ER) stress & diabetes. Indian J med Res 125: 411-424, 2007. Ruderman, NB, Saha AK, Vavvas D, Witters LA, Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 276: E1-E18, 1999. Rodrigues B, Poucheret P, Battell ML, and McNeill JH. Streptozotocin-induced diabetes: induction, mechanism(s), and dose dependency. In Experimental models of diabetes. 6-13, 1999. Rudich A, Kozlovsky N, Potashnik R, Bashan N. Oxidant stress reduces insulin responsiveness in 3T3–L1 adipocytes. Am J Physiol 35: E935–E940, 1997. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M, Araki E. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun 300: 216-222, 2003. Salt IP, Johnsong G, Ashcroft GJH, Hardie DG. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic b cells, and may regulate insulin release. Biochem. J 335: 533-539, 1998. Satin LS, Tavalin SJ, Kinard TA, Teague J. Contribution of L- and non-L-type calcium channels to voltage-gated calcium current and glucose-dependent insulin secretion in HIT-T15 cells. Endocrinology 136: 4589-4601, 1995. Shirwaikar A , Shirwaikar A, Rajendran K, Punitha ISR. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol Pharm Bull 29: 1906-1910, 2006. Shulman GI. Cellular mechanism of insulin resistance. J Clin Invest 106: 171-176, 2000. Silva XG, Leclerc I, Salt IP, Doiron B, Hardie DG, Kahn A, Rutte GA. Role of AMP-activated protein kinase in the regulation by glucose of islet b-cell gene expression. Proc Natl Acad Sci 97: 4023-4028, 2000. Silva XG, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem. J 371: 761-774, 2003. Singh J and Kakkar P. Antihyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. J Ethnopharmacol 123: 22-26, 2009. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell B J, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271: 611-614, 1996. Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100: 398–403, 1997. Steinberg GR, Rush JW, Dyck DJ. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am J Physiol Endocrinol Metab 284: E648-654,2003. Szkudelski T. The Mechanism of Alloxan and Streptozotocin Action in beta Cells of the Rat Pancreas. Physiol. Res. 50: 536-546, 2001. Tang LQ, Wei W, Chen LM, Liu S. Effects of berberine on diabetes induced by alloxan and high-fat/high-cholesterol diet in rats. J Ethnopharmacol 108: 109-115, 2006. Turner N, Li JY, Gosby A, To SWC, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I. Diabetes 57: 1414-1418, 2008. Vajna R, Klockner U, Pereverzev A, Weiergraber M, Chen X, Miljanich G, Klugbauer N, Hescheler J, Perez-Reyes E, Schneider T. Functional coupling between ’R-type’ Ca2+ channels and insulin secretion in the insulinoma cell line INS-1. Eur J Biochem 268: 1066-1075, 2001. Velasco G, Geelen MJ, Guzman M. Control of hepatic fatty acid oxidation by 5''-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch Biochem Biophys 337: 169-175,1997. Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, Dolphin AC. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 7: 939-946, 2004. Vincent MF, Erion MD, Gruber HE, Van den Berghe G. Hypoglycaemic effect of AICAriboside in mice. Diabetologia 39: 1148-1155, 1996. Viollet B, Andreelli F, Jorgensent SB, Perrin C, Flamez D, Mu J, Wojtaszewskit JFP, Schuit FC. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans 31: 216-219, 2003. Viollet B, Andreelli F, Jørgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111: 91-98, 2003. Walker M. Obesity, insulin resistance, and its link to non-insulin-dependent diabetes mellitus. Metabolism 44: 18-20, 1995. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6: 909-919, 2000. Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 103: 27-37, 1999. Wang YX, Zheng YM, Zhou XB. Inhibitory effects of berberine on ATP-sensitive K+ channels in cardiac myocytes. Eur J Pharmacol 316: 307-315, 1996. Watanabe RM, Black MH, Xiang AH, Allayee H, Lawrence JM, Buchanan TA. Genetics of gestational diabetes mellitus and type 2 diabetes. Diabetes Care 30: S134-140, 2007. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 26: 19-39, 2005. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053, 2004. Woods A, Azzout MD, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20: 6704-6711, 2000. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone MR, Carlson M, Carling D. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism 2: 21-33, 2005. Witters LA, Nordlund AC, Marshall L. Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5''-AMP-activated protein kinase. Biophys Biochem Res Commun 181: 1486-1492, 1991. Wu J and Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13: 374-384, 2006. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8: 1288-1295, 2002. Yin J, Gao Z, Liu Dong, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 294: E148-E156, 2008. Yin J, Hu R, Chen M, Tang J, Li F, Yang Y, Chen J. Effects of berberine on glucose metabolism in vitro. Metabolism 51: 1439-1443, 2002. Yi P, Lu FE, Xu LJ, Chen G, Dong H, Wang KF. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. W J G 14: 876-883, 2008. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57: 712-717, 2008. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, Huo L, Wang M, Hong J, Wu P, Ren G, Ning G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008. Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, Li F, Tang J, Chen M, Chen J. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 56: 405-412, 2007. Zhou L, Wang X, Shao L, Yang Y, Shang W, Yuan G, Jiang G, Li F, Tang J, Jing H, Chen M. Berberine acutely inhibits insulin secretion from β-cells through 3'',5''-cyclic adenosine 5''-monophosphate signaling athway. Endocrinology 149: 4510-4518, 2008. Zhou J, Zhou S, Tang J, Zhang K, Guang L, Huang Y, Xu Y, Ying Y, Zhang L, Li D. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/ high-fat diet-induced diabetic rats. Eur J Pharmacol 606: 262–268, 2009. Zuo F, Nakamura N, Akao T, Hattori M. Pharmacokinetics of berberine and its main metabolites in conventional and pseudo germ-free rats determined by liquid chromatography/ion trap mass spectrometry. Drug Metab Dispos 34: 2064-2072, 2006.
目前口服的糖尿病藥物有磺醯尿類、雙胍類、α-glucosidase抑制劑、thiazolidinedione、胰島素以及dipeptidyl peptidase 4抑制劑,各有其限制性且亦有許多不良之副作用。近來,許多學者朝向古老醫學草藥治療尋找更多的糖尿病治療方法,黃連素(berberine chloride)是中藥-黃連的主要成分,而黃連在中國醫學用來治療感染、下痢、糖尿病等症狀已有千年之久。在許多文獻中皆指出黃連素具有改善胰島素阻抗及控制血糖的效果。因此,本實驗將使用黃連素給予高脂飼料及STZ誘發之糖尿病大白鼠,然後使用活體胰臟灌流技術觀察其對胰臟分泌胰島素之影響以及黃連素對胰島素分泌之作用可能透過之途徑。結果發現,在葡萄糖耐受性試驗中,黃連素皆可以改善高脂飼料及STZ誘發之糖尿病大白鼠之胰島阻抗或提升其葡萄糖利用率,達到降低血糖的效果。而使用活體胰臟灌流,給予黃連素的高脂飼料餵食之大白鼠,在葡萄糖誘導之胰島素分泌的敏感性明顯比未治療的提升,且更高於對照組。在使用黃連素給予STZ誘導之糖尿病大鼠上,其葡萄糖誘導胰島素的能力並未見改善,且兩階段胰島素的分泌皆消失了。但若先給予口服黃連素再腹腔注射STZ,發現黃連素對葡萄糖誘導胰島素分泌有保護作用,尚呈現兩階段之分泌。由本實驗室先前實驗發現,黃連素刺激胰島素分泌過程主為先增加後抑制胰島素之分泌。本研究發現,在禁食狀態下的大鼠給予口服黃連素,有抑制胰島素且使血中葡萄糖濃度上升的現象。另外,實驗結果發現黃連素刺激胰島素分泌的階段可能最主要是經由腎上腺β接受器的活性,但第二階段之抑制作用透過何種途徑則仍須進一步研究。

Berberine is a nature compound extracted from Rhizoma Coptidis and was used for the treatment of diabetes for more than 1000 years in Chinese medicine. In order to find a more effective drug to treat diabetes, berberine was used to perfuse rat pancreas and to explore the effect of berberine treatment in high-fat diet- and STZ-induced diabetic rats. The results shown that berberine stimulated insulin secretion in a biphasic manner. In addition, berberine improved oral glucose tolerance test in high-fat diet- and STZ-induced diabetic rats. Berberine protected the effect of glucose-induced insulin secretion in STZ-induced diabetic rats, and increased the sensitivity of glucose-induced insulin secretion in high-fat diet rats. By using rat pancreatic perfusion technique, we found that berberine temporally stimulated insulin secretion, then inhibited insulin secretion. In addition, berberine suppressed insulin secretion and raised blood glucose concentration in fasting SD rats. After rat pancreas was first perfused with propranolol, we found that the action of berberine in insulin secretion may be mainly mediated through beta-receptor activity. Nevertheless, berberine suppressed insulin secretion still need a further study.
其他識別: U0005-3007200912361100
Appears in Collections:獸醫學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.