Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14125
DC FieldValueLanguage
dc.contributor沈瑞鴻zh_TW
dc.contributor黃金城zh_TW
dc.contributor殷獻生zh_TW
dc.contributor邱華賢zh_TW
dc.contributor.advisor李龍湖zh_TW
dc.contributor.author蘇柏栩zh_TW
dc.contributor.authorSu, Bor-Sheuen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:51:46Z-
dc.date.available2014-06-06T06:51:46Z-
dc.identifierU0005-1410201020234900zh_TW
dc.identifier.citation呂榮修。1995。新城雞瘟。禽病診斷彩色圖譜。pp. 9-21。呂榮修博士編著。中華民國養雞協會出版。臺灣省。中華民國。 蔡向榮,呂榮修。1993。1992年台灣雞傳染性華氏囊病大流行之疫情分析。中華獸醫誌,19: 249-258。 Afonso, C. L., Tulman, E. R., Lu, Z., Zsak, L., Kutish, G. F. & Rock, D. L. (2000). The genome of fowlpox virus. J Virol 74, 3815-3831. Alexander, D. J. (2000). Newcastle disease in ostriches (Struthio camelus) - a review. Avian Pathol 29, 95-100. Alexander, D. J. & Collins, M. S. (1981). The structural polypeptides of avian paramyxoviruses. Arch Virol 67, 309-323. Alexander, D. J., Manvell, R. J., Lowings, J. P., Frost, K. M., Collins, M. S., Russell, P. H. & Smith, J. E. (1997). Antigenic diversity and similarities detected in avian paramyxovirus type 1 (Newcastle disease virus) isolates using monoclonal antibodies. Avian Pathol 26, 399-418. Allan, W. H., Faragher, J. T. & Cullen, G. A. (1972). Immunosuppression by the infectious bursal agent in chickens immunised against Newcastle disease. Vet Rec 90, 511-512. Auer, J. (1952). Functional localization of lesions in Newcastle disease. Can J Comp Med Vet Sci 16, 277-284. Azad, A. A., Barrett, S. A. & Fahey, K. J. (1985). The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology 143, 35-44. Azad, A. A., Jagadish, M. N., Brown, M. A. & Hudson, P. J. (1987). Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology 161, 145-152. Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10, 411-421. Barouch, D. H., Liu, J., Lynch, D. M., O''Brien, K. L., La Porte, A., Simmons, N. L., Riggs, A. M., Clark, S., Abbink, P., Montefiori, D. C., Landucci, G., Forthal, D. N., Self, S. G., Carville, A., Mansfield, K. & Goudsmit, J. (2009). Protective efficacy of a single immunization of a chimeric adenovirus vector-based vaccine against simian immunodeficiency virus challenge in rhesus monkeys. J Virol 83, 9584-9590. Baroudy, B. M. & Moss, B. (1982). Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over. Nucleic Acids Res 10, 5673-5679. Benton, W. J., Cover, M. S., Rosenberger, J. K. & Lake, R. S. (1967). Physicochemical properties of the infectious bursal agent (IBA). Avian Dis 11, 438-445. Berg, T. P., Gonze, M. & Meulemans, G. (1991). Acute infectious bursal disease in poultry: Isolation and characterisation of a highly virulent strain. Avian Pathol 20, 133-143. Berg, T. P. & Meulemans, G. (1991). Acute infectious bursal disease in poultry: protection afforded by maternally derived antibodies and interference with live vaccination. Avian Pathol 20, 409-421. Billiau, A. & Matthys, P. (2001). Modes of action of Freund''s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70, 849-860. Bin Song, K., Won, M. & Meares, C. F. (1998). Expression of recombinant Lym-1 single-chain Fv in Escherichia coli. Biotechnol Appl Biochem 28, 163-167. Boersma, W. J., Bogaerts, W. J., Bianchi, A. T. & Claassen, E. (1992). Adjuvant properties of stable water-in-oil emulsions: evaluation of the experience with Specol. Res Immunol 143, 503-512. Bomford, R. (1980). The comparative selectivity of adjuvants for humoral and cell-mediated immunity. I. Effect on the antibody response to bovine serum albumin and sheep red blood cells of Freund''s incomplete and complete adjuvants, alhydrogel, Corynebacterium parvum, Bordetella pertussis, muramyl dipeptide and saponin. Clin Exp Immunol 39, 426-434. Boot, H. J., ter Huurne, A. H. & Peeters, B. P. (2000). Generation of full-length cDNA of the two genomic dsRNA segments of infectious bursal disease virus. J Virol Methods 84, 49-58. Boulanger, D., Baier, R., Erfle, V. & Sutter, G. (2002). Generation of recombinant fowlpox virus using the non-essential F11L orthologue as insertion site and a rapid transient selection strategy. J Virol Methods 106, 141-151. Boursnell, M. E., Green, P. F., Campbell, J. I., Deuter, A., Peters, R. W., Tomley, F. M., Samson, A. C., Chambers, P., Emmerson, P. T. & Binns, M. M. (1990a). Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. J Gen Virol 71, 621-628. Boursnell, M. E., Green, P. F., Campbell, J. I., Deuter, A., Peters, R. W., Tomley, F. M., Samson, A. C., Emmerson, P. T. & Binns, M. M. (1990b). A fowlpox virus vaccine vector with insertion sites in the terminal repeats: demonstration of its efficacy using the fusion gene of Newcastle disease virus. Vet Microbiol 23, 305-316. Box, P. G. & Furminger, I. G. (1975). Newcastle disease antibody levels in chickens after vaccination with oil emulsion adjuvant killed vaccine. Vet Rec 96, 108-111. Boyle, D. B. & Coupar, B. E. (1986). Identification and cloning of the fowlpox virus thymidine kinase gene using vaccinia virus. J Gen Virol 67 ( Pt 8), 1591-1600. Boyle, D. B. & Coupar, B. E. (1988). Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus Res 10, 343-356. Boyle, D. B., Coupar, B. E., Gibbs, A. J., Seigman, L. J. & Both, G. W. (1987). Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases. Virology 156, 355-365. Boyle, D. B. & Heine, H. G. (1994). Influence of dose and route of inoculation on responses of chickens to recombinant fowlpox virus vaccines. Vet Microbiol 41, 173-181. Brown, F. (1986). The classification and nomenclature of viruses:summary of results of meetings of the International Committee on Taxonomy of Viruses in Sendal, September 1984. Intervirology 25, 141-143. Brune, W., Menard, C., Hobom, U., Odenbreit, S., Messerle, M. & Koszinowski, U. H. (1999). Rapid identification of essential and nonessential herpesvirus genes by direct transposon mutagenesis. Nat Biotechnol 17, 360-364. Brune, W., Messerle, M. & Koszinowski, U. H. (2000). Forward with BACs: new tools for herpesvirus genomics. Trends Genet 16, 254-259. Carter, J. K. & Cheville, N. F. (1981). Isolation of surface tubules of fowlpox virus. Avian Dis 25, 454-462. Carter, Q. L. & Curiel, R. E. (2005). Interleukin-12 (IL-12) ameliorates the effects of porcine respiratory and reproductive syndrome virus (PRRSV) infection. Vet Immunol Immunopathol 107, 105-118. Caston, J. R., Martinez-Torrecuadrada, J. L., Maraver, A., Lombardo, E., Rodriguez, J. F., Casal, J. I. & Carrascosa, J. L. (2001). C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75, 10815-10828. Chakrabarti, S., Sisler, J. R. & Moss, B. (1997). Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23, 1094-1097. Chambers, P., Millar, N. S., Bingham, R. W. & Emmerson, P. T. (1986). Molecular cloning of complementary DNA to Newcastle disease virus, and nucleotide sequence analysis of the junction between the genes encoding the haemagglutinin-neuraminidase and the large protein. J Gen Virol 67, 475-486. Chan, S. H., Perussia, B., Gupta, J. W., Kobayashi, M., Pospisil, M., Young, H. A., Wolf, S. F., Young, D., Clark, S. C. & Trinchieri, G. (1991). Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med 173, 869-879. Cheevers, W. P., O''Callaghan, D. J. & Randall, C. C. (1968). Biosynthesis of host and viral deoxyribonucleic acid during hyperplastic fowlpox infection in vivo. J Virol 2, 421-429. Cheevers, W. P. & Randall, C. C. (1968). Viral and cellular growth and sequential increase of protein and DNA during fowlpox infection in vivo (32700). Proc Soc Exp Biol Med 127, 401-405. Chen, H. Y., Cui, B. A., Xia, P. A., Li, X. S., Hu, G. Z., Yang, M. F., Zhang, H. Y., Wang, X. B., Cao, S. F., Zhang, L. X., Kang, X. T. & Tu, K. (2008). Cloning, in vitro expression and bioactivity of duck interleukin-18. Vet Immunol Immunopathol 123, 205-214. Cheville, N. F. & Beard, C. W. (1972). Cytopathology of Newcastle disease. The influence of bursal and thymic lymphoid systems in the chicken. Lab Invest 27, 129-143. Cheville, N. F., Beard, C. W. & Heminover, J. A. (1972). Comparative cytopathology of Newcastle disease virus. Use of ferritin-labeled antibody on allantoic and intestinal epithelium. Vet Pathol 9, 38-52. Clements, C. J. & Griffiths, E. (2002). The global impact of vaccines containing aluminium adjuvants. Vaccine 20 Suppl 3, S24-33. Cosgrove, A. S. (1962). An apparently new disease of chickens-avian nephrosis. Avian Dis 6, 385-389. Cottingham, M. G. & Gilbert, S. C. (2010). Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome. J Virol Methods 168, 233-236. Crisman, J. M., Jackwood, R. J., Lana, D. P. & Jackwood, D. J. (1993). Evaluation of VP2 epitopes of infectious bursal disease virus using in vitro expression and radioimmunoprecipitation. Arch Virol 128, 333-344. Dale, C. J., De Rose, R., Stratov, I., Chea, S., Montefiori, D. C., Thomson, S., Ramshaw, I. A., Coupar, B. E., Boyle, D. B., Law, M. & Kent, S. J. (2004). Efficacy of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus. J Virol 78, 13819-13828. de Leeuw, O. & Peeters, B. (1999). Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol 80, 131-136. Degen, W. G., van Daal, N., van Zuilekom, H. I., Burnside, J. & Schijns, V. E. (2004). Identification and molecular cloning of functional chicken IL-12. J Immunol 172, 4371-4380. Degen, W. G., van Zuilekom, H. I., Scholtes, N. C., van Daal, N. & Schijns, V. E. (2005). Potentiation of humoral immune responses to vaccine antigens by recombinant chicken IL-18 (rChIL-18). Vaccine 23, 4212-4218. DeLange, A. M. (1989). Identification of temperature-sensitive mutants of vaccinia virus that are defective in conversion of concatemeric replicative intermediates to the mature linear DNA genome. J Virol 63, 2437-2444. Dharsana, R. & Spradbrow, P. B. (1985). The demonstration of cell-mediated immunity in chickens vaccinated with fowlpox virus. Zentralbl Veterinarmed B 32, 628-632. Dolganiuc, V., McGinnes, L., Luna, E. J. & Morrison, T. G. (2003). Role of the cytoplasmic domain of the Newcastle disease virus fusion protein in association with lipid rafts. J Virol 77, 12968-12979. Domi, A. & Moss, B. (2002). Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci U S A 99, 12415-12420. Domi, A. & Moss, B. (2005). Engineering of a vaccinia virus bacterial artificial chromosome in Escherichia coli by bacteriophage lambda-based recombination. Nat Methods 2, 95-97. Donofrio, G., Franceschi, V., Capocefalo, A., Taddei, S., Sartori, C., Bonomini, S., Cavirani, S., Cabassi, C. S. & Flammini, C. F. (2009). Cellular targeting of engineered heterologous antigens is a determinant factor for bovine herpesvirus 4-based vaccine vector development. Clin Vaccine Immunol 16, 1675-1686. Edbauer, C., Weinberg, R., Taylor, J., Rey-Senelonge, A., Bouquet, J. F., Desmettre, P. & Paoletti, E. (1990). Protection of chickens with a recombinant fowlpox virus expressing the Newcastle disease virus hemagglutinin-neuraminidase gene. Virology 179, 901-904. Eidson, C. S. & Kleven, S. H. (1976). A comparison of various routes of Newcastle Disease vaccination at one day of age. Poult Sci 55, 1778-1787. Eidson, C. S., Thayer, S. G., Villegas, P. & Kleven, S. H. (1982). Vaccination of broiler chicks from breeder flocks immunized with a live or inactivated oil emulsion Newcastle disease vaccine. Poult Sci 61, 1621-1629. Eleazer, T. H., Harrell, J. S. & Blalock, H. G. (1983). Transmission studies involving a wet fowl pox isolate. Avian Dis 27, 542-544. Eterradossi, N., Toquin, D., Rivallan, G. & Guittet, M. (1997). Modified activity of a VP2-located neutralizing epitope on various vaccine, pathogenic and hypervirulent strains of infectious bursal disease virus. Arch Virol 142, 255-270. Faragher, J. T. (1972). Infectious bursal disease of chickens. Veterinary Bulletin 42, 361-369. Faragher, J. T., Allan, W. H. & Wyeth, P. J. (1974). Immunosuppressive effect of infectious bursal agent on vaccination against Newcastle disease. Vet Rec 95, 385-388. Fehniger, T. A., Carson, W. E. & Caligiuri, M. A. (1999). Costimulation of human natural killer cells is required for interferon gamma production. Transplant Proc 31, 1476-1478. Firth, G. A. (1974). Letter: Occurrence of an infectious bursal syndrome within an Australian poultry flock. Aust Vet J 50, 128-130. Fournout, S., Dozois, C. M., Yerle, M., Pinton, P., Fairbrother, J. M., Oswald, E. & Oswald, I. P. (2000). Cloning, chromosomal location, and tissue expression of the gene for pig interleukin-18. Immunogenetics 51, 358-365. Galinski, M. S. (1991). Paramyxoviridae: transcription and replication. Adv Virus Res 39, 129-162. Gately, M. K., Gubler, U., Brunda, M. J., Nadeau, R. R., Anderson, T. D., Lipman, J. M. & Sarmiento, U. (1994). Interleukin-12: a cytokine with therapeutic potential in oncology and infectious diseases. Ther Immunol 1, 187-196. Ghayur, T., Banerjee, S., Hugunin, M., Butler, D., Herzog, L., Carter, A., Quintal, L., Sekut, L., Talanian, R., Paskind, M., Wong, W., Kamen, R., Tracey, D. & Allen, H. (1997). Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386, 619-623. Gu, Y., Kuida, K., Tsutsui, H., Ku, G., Hsiao, K., Fleming, M. A., Hayashi, N., Higashino, K., Okamura, H., Nakanishi, K., Kurimoto, M., Tanimoto, T., Flavell, R. A., Sato, V., Harding, M. W., Livingston, D. J. & Su, M. S. (1997). Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275, 206-209. Gubler, U., Chua, A. O., Schoenhaut, D. S., Dwyer, C. M., McComas, W., Motyka, R., Nabavi, N., Wolitzky, A. G., Quinn, P. M., Familletti, P. C. & et al. (1991). Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci U S A 88, 4143-4147. Haygreen, E. A., Kaiser, P., Burgess, S. C. & Davison, T. F. (2006). In ovo DNA immunisation followed by a recombinant fowlpox boost is fully protective to challenge with virulent IBDV. Vaccine 24, 4951-4961. Heine, H. G. & Boyle, D. B. (1993). Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens. Arch Virol 131, 277-292. Heine, H. G., Haritou, M., Failla, P., Fahey, K. & Azad, A. (1991). Sequence analysis and expression of the host-protective immunogen VP2 of a variant strain of infectious bursal disease virus which can circumvent vaccination with standard type I strains. J Gen Virol 72, 1835-1843. Herczeg, J., Wehmann, E., Bragg, R. R., Travassos Dias, P. M., Hadjiev, G., Werner, O. & Lomniczi, B. (1999). Two novel genetic groups (VIIb and VIII) responsible for recent Newcastle disease outbreaks in Southern Africa, one (VIIb) of which reached Southern Europe. Arch Virol 144, 2087-2099. Hightower, L. E. & Bratt, M. A. (1974). Protein synthesis in Newcastle disease virus-infected chicken embryo cells. J Virol 13, 788-800. Hitchner, S. B. (1970). Infectivity of infectious bursal disease virus for embryonating eggs. Poult Sci 49, 511-516. Hoess, R. H. & Abremski, K. (1984). Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci U S A 81, 1026-1029. Hosamani, M., Mondal, B., Muneta, Y. & Rasool, T. J. (2005). Molecular characterization and expression of caprine (Capra hircus) interleukin-18 cDNA. Int J Immunogenet 32, 293-297. Hosohara, K., Ueda, H., Kashiwamura, S., Yano, T., Ogura, T., Marukawa, S. & Okamura, H. (2002). Interleukin-18 induces acute biphasic reduction in the levels of circulating leukocytes in mice. Clin Diagn Lab Immunol 9, 777-783. Huang, A. S., Baltimore, D. & Bratt, M. A. (1971). Ribonucleic acid polymerase in virions of Newcastle disease virus: comparison with the vesicular stomatitis virus polymerase. J Virol 7, 389-394. Huang, C. H., Lomas, C., Daniels, G. & Blumenfeld, O. O. (1994). Glycophorin He(Sta) of the human red blood cell membrane is encoded by a complex hybrid gene resulting from two recombinational events. Blood 83, 3369-3376. Hung, L. H., Li, H. P., Lien, Y. Y., Wu, M. L. & Chaung, H. C. (2010). Adjuvant effects of chicken interleukin-18 in avian Newcastle disease vaccine. Vaccine 28, 1148-1155. Hunt, I. (2005). From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 40, 1-22. Hyodo, Y., Matsui, K., Hayashi, N., Tsutsui, H., Kashiwamura, S., Yamauchi, H., Hiroishi, K., Takeda, K., Tagawa, Y., Iwakura, Y., Kayagaki, N., Kurimoto, M., Okamura, H., Hada, T., Yagita, H., Akira, S., Nakanishi, K. & Higashino, K. (1999). IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J Immunol 162, 1662-1668. Ilangumaran, S., Ramanathan, S. & Rottapel, R. (2004). Regulation of the immune system by SOCS family adaptor proteins. Semin Immunol 16, 351-365. Ishizaka, T., Setoguchi, A., Masuda, K., Ohno, K. & Tsujimoto, H. (2001). Molecular cloning of feline interferon-gamma-inducing factor (interleukin-18) and its expression in various tissues. Vet Immunol Immunopathol 79, 209-218. Ivanyi, J. (1975). Immunodeficiency in the chicken. II. Production of monomeric IgM following testosterone treatment or infection with Gumboro disease. Immunology 28, 1015-1021. Jackwood, D. H. & Saif, Y. M. (1987). Antigenic diversity of infectious bursal disease viruses. Avian Dis 31, 766-770. Jackwood, D. J., Saif, Y. M. & Moorhead, P. D. (1985). Immunogenicity and antigenicity of infectious bursal disease virus serotypes I and II in chickens. Avian Dis 29, 1184-1194. Jahanshiri, F., Eshaghi, M. & Yusoff, K. (2005). Identification of phosphoprotein:phosphoprotein and phosphoprotein:nucleocapsid protein interaction domains of the Newcastle disease virus. Arch Virol 150, 611-618. Karaca, K., Sharma, J. M., Winslow, B. J., Junker, D. E., Reddy, S., Cochran, M. & McMillen, J. (1998). Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses. Vaccine 16, 1496-1503. Katz, D. & Kohn, A. (1976). Antibodies in blood and secretions of chickens immunized parenterally and locally with killed Newcastle disease virus vaccine. Dev Biol Stand 33, 290-296. Ke, G. M., Liu, H. J., Lin, M. Y., Chen, J. H., Tsai, S. S. & Chang, P. C. (2001). Molecular characterization of Newcastle disease viruses isolated from recent outbreaks in Taiwan. J Virol Methods 97, 1-11. Kibenge, F. S., Qian, B., Cleghorn, J. R. & Martin, C. K. (1997). Infectious bursal disease virus polyprotein processing does not involve cellular proteases. Arch Virol 142, 2401-2419. Kimura, J., Nariuchi, H., Watanabe, T. & Matuhasi, T. (1978a). Studies on the adjuvant effect of water-in-oil-in-water (w/o/w) emulsion of sesame oil. 2. Mode of action of the w/o/w emulsion. Jpn J Exp Med 48, 203-209. Kimura, J., Nariuchi, H., Watanabe, T., Matuhasi, T., Okayasu, I. & Hatakeyama, S. (1978b). Studies on the adjuvant effect of water-in-oil-in-water (w/o/w) emulsion of sesame oil. 1. Enhanced and persistent antibody formation by antigen incorporated into the water-in-oil-in-water emulsion. Jpn J Exp Med 48, 149-154. Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R., Sherman, F., Perussia, B. & Trinchieri, G. (1989). Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170, 827-845. Kochan, G., Gonzalez, D. & Rodriguez, J. F. (2003). Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol 148, 723-744. Kolakofsky, D., Boy de la Tour, E. & Delius, H. (1974). Molecular weight determination of Sendai and Newcastle disease virus RNA. J Virol 13, 261-268. Komine, K. I., Ohta, H., Fujii, H., Watanabe, Y., Kamata, S. & Sugiyama, M. (1995). Efficacy of subcutaneous application of live infectious bursal disease vaccine in young chickens with maternally derived antibody. J Vet Med Sci 57, 647-653. Kumar, S., Ahi, Y. S., Salunkhe, S. S., Koul, M., Tiwari, A. K., Gupta, P. K. & Rai, A. (2009). Effective protection by high efficiency bicistronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL-2. Vaccine 27, 864-869. Kumar, S. & Boyle, D. B. (1990). A poxvirus bidirectional promoter element with early/late and late functions. Virology 179, 151-158. Laidlaw, S. M., Anwar, M. A., Thomas, W., Green, P., Shaw, K. & Skinner, M. A. (1998). Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP, PC-1, and an orphan human homolog of a secreted nematode protein. J Virol 72, 6742-6751. Lee, J. W., Huang, J. P., Hong, L. S., Shu, S. F., Yu, C. & Chu, C. Y. (2010). Prokaryotic recombinant hemagglutinin-neuraminidase protein enhances the humoral response and efficacy of commercial Newcastle disease vaccines in chickens. Avian Dis 54, 53-58. Lee, L. E., Witter, R. L., Reddy, S. M., Wu, P., Yanagida, N. & Yoshida, S. (2003). Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek''s disease virus. Avian Dis 47, 549-558. Lee, L. F., Bacon, L. D., Yoshida, S., Yanagida, N., Zhang, H. M. & Witter, R. L. (2004). The efficacy of recombinant fowlpox vaccine protection against Marek''s disease: its dependence on chicken line and B haplotype. Avian Dis 48, 129-137. Lee, L. H., Lu, Y. S. & Li, N. J., (1988). Characterization of infections bursal disease virus isolated in Taiwan. J Chin Soc Vet Sci 14, 89-100. Lee, L. H., Yu, S. L.& Shieh, H. K., (1992). Detection of infectious bursal disease virus infection using the polymerase chain reaction. J Virol Methods 40, 243-253. Lee, Y. J., Sung, H. W., Choi, J. G., Lee, E. K., Yoon, H., Kim, J. H. & Song, C. S. (2008). Protection of chickens from Newcastle disease with a recombinant baculovirus subunit vaccine expressing the fusion and hemagglutininneuraminidase proteins. J Vet Sci 9, 301-308. Leroith, D. & Nissley, P. (2005). Knock your SOCS off! J Clin Invest 115, 233-236. Leutenegger, C. M., Boretti, F. S., Mislin, C. N., Flynn, J. N., Schroff, M., Habel, A., Junghans, C., Koenig-Merediz, S. A., Sigrist, B., Aubert, A., Pedersen, N. C., Wittig, B. & Lutz, H. (2000). Immunization of cats against feline immunodeficiency virus (FIV) infection by using minimalistic immunogenic defined gene expression vector vaccines expressing FIV gp140 alone or with feline interleukin-12 (IL-12), IL-16, or a CpG motif. J Virol 74, 10447-10457. Levy, R., Spira, G. & Zakay-Rones, Z. (1975). Newcastle disease virus pathogenesis in the respiratory tract of local or systemic immunized chickens. Avian Dis 19, 700-706. Liljebjelke, K. A., King, D. J. & Kapczynski, D. R. (2008). Determination of minimum hemagglutinin units in an inactivated Newcastle disease virus vaccine for clinical protection of chickens from exotic Newcastle disease virus challenge. Avian Dis 52, 260-268. Ling, P., Gately, M. K., Gubler, U., Stern, A. S., Lin, P., Hollfelder, K., Su, C., Pan, Y. C. & Hakimi, J. (1995). Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J Immunol 154, 116-127. Liu, B., Novick, D., Kim, S. H. & Rubinstein, M. (2000). Production of a biologically active human interleukin 18 requires its prior synthesis as PRO-IL-18. Cytokine 12, 1519-1525. Lombardo, E., Maraver, A., Espinosa, I., Fernandez-Arias, A. & Rodriguez, J. F. (2000). VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology 277, 345-357. Lomniczi, B., Wehmann, E., Herczeg, J., Ballagi-Pordany, A., Kaleta, E. F., Werner, O., Meulemans, G., Jorgensen, P. H., Mante, A. P., Gielkens, A. L., Capua, I. & Damoser, J. (1998). Newcastle disease outbreaks in recent years in western Europe were caused by an old (VI) and a novel genotype (VII). Arch Virol 143, 49-64. Lowenthal, J. W., O''Neil, T. E., David, A., Strom, G. & Andrew, M. E. (1999). Cytokine therapy: a natural alternative for disease control. Vet Immunol Immunopathol 72, 183-188. Lu, Y. L. & Shieh, H. K. (1983). Infectious bursal disease in Taiwan. J Chinese Soc Vet Sci 9, 61-66. Luckow, V. A., Lee, S. C., Barry, G. F. & Olins, P. O. (1993). Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67, 4566-4579. Lui, V. W., He, Y., Falo, L. & Huang, L. (2002). Systemic administration of naked DNA encoding interleukin 12 for the treatment of human papillomavirus DNA-positive tumor. Hum Gene Ther 13, 177-185. Ma, M., Jin, N., Shen, G., Zhu, G., Liu, H. J., Zheng, M., Lu, H., Huo, X., Jin, M., Yin, G., Ma, H., Li, X., Ji, Y. & Jin, K. (2008). Immune responses of swine inoculated with a recombinant fowlpox virus co-expressing P12A and 3C of FMDV and swine IL-18. Vet Immunol Immunopathol 121, 1-7. Macreadie, I. G., Vaughan, P. R., Chapman, A. J., McKern, N. M., Jagadish, M. N., Heine, H. G., Ward, C. W., Fahey, K. J. & Azad, A. A. (1990). Passive protection against infectious bursal disease virus by viral VP2 expressed in yeast. Vaccine 8, 549-552. Mahmood, M. S., Hussain, I., Siddique, M., Akhtar, M. & Ali, S. (2007). DNA vaccination with VP2 gene of very virulent infectious bursal disease virus (vvIBDV) delivered by transgenic E. coli DH5alpha given orally confers protective immune responses in chickens. Vaccine 25, 7629-7635. Mahmood, M. S., Siddique, M., Hussain, I., Khan, A. & Mansoor, M. K. (2006). Protection capability of recombinant plasmid DNA vaccine containing VP2 gene of very virulent infectious bursal disease virus in chickens adjuvanted with CpG oligodeoxynucleotide. Vaccine 24, 4838-4846. Manetti, R., Parronchi, P., Giudizi, M. G., Piccinni, M. P., Maggi, E., Trinchieri, G. & Romagnani, S. (1993). Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 177, 1199-1204. Medrano, G., Dolan, M. C., Stephens, N. T., McMickle, A., Erf, G., Radin, D. & Cramer, C. L. (2010). Efficient plant-based production of chicken interleukin-12 yields a strong immunostimulatory cytokine. J Interferon Cytokine Res 30, 143-154. Merchlinsky, M., Garon, C. F. & Moss, B. (1988). Molecular cloning and sequence of the concatemer junction from vaccinia virus replicative DNA. Viral nuclease cleavage sites in cruciform structures. J Mol Biol 199, 399-413. Merchlinsky, M. & Moss, B. (1989). Resolution of vaccinia virus DNA concatemer junctions requires late-gene expression. J Virol 63, 1595-1603. Metzger, D. W. (2009). IL-12 as an adjuvant for the enhancement of protective humoral immunity. Expert Rev Vaccines 8, 515-518. Micallef, M. J., Tanimoto, T., Kohno, K., Ikeda, M. & Kurimoto, M. (1997). Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res 57, 4557-4563. Minbay, A. & Kreier, J. P. (1973). An experimental study of the pathogenesis of fowlpox infection in chickens. Avian Dis 17, 532-539. Mingxiao, M., Ningyi, J., Zhenguo, W., Ruilin, W., Dongliang, F., Min, Z., Gefen, Y., Chang, L., Leili, J., Kuoshi, J. & Yingjiu, Z. (2006). Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18. Vaccine 24, 4304-4311. Mockett, A. P., Southee, D. J., Tomley, F. M. & Deuter, A. (1987). Fowlpox virus: its structural proteins and immunogens and the detection of viral-specific antibodies by ELISA. Avian Pathol 16, 493-504. Mori, H., Tawara, H., Nakazawa, H., Sumida, M., Matsubara, F., Aoyama, S., Iritani, Y., Hayashi, Y. & Kamogawa, K. (1994). Expression of the Newcastle disease virus (NDV) fusion glycoprotein and vaccination against NDV challenge with a recombinant baculovirus. Avian Dis 38, 772-777. Morita, C. (1973). Role of humoral and cell-mediated immunity on the recovery of chickens from fowlpox virus infection. J Immunol 111, 1495-1501. Moss, B. (1996). Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93, 11341-11348. Mountcastle, W. E., Compans, R. W., Caliguiri, L. A. & Choppin, P. W. (1970). Nucleocapsid protein subunits of simian virus 5, Newcastle disease virus, and Sendai virus. J Virol 6, 677-684. Moyer, R. W. & Graves, R. L. (1981). The mechanism of cytoplasmic orthopoxvirus DNA replication. Cell 27, 391-401. Muller, H. & Becht, H. (1982). Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. J Virol 44, 384-392. Mundt, E., Kollner, B. & Kretzschmar, D. (1997). VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J Virol 71, 5647-5651. Mundt, E. & Muller, H. (1995). Complete nucleotide sequences of 5''- and 3''-noncoding regions of both genome segments of different strains of infectious bursal disease virus. Virology 209, 10-18. Muskett, J. C., Hopkins, I. G., Edwards, K. R. & Thornton, D. H. (1979). Comparison of two infectious bursal disease vaccine strains: efficacy and potential hazards in susceptible and maternally immune birds. Vet Rec 104, 332-334. Nagai, Y., Klenk, H. D. & Rott, R. (1976). Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 72, 494-508. Nick, H., Cursiefen, D. & Becht, H. (1976). Structural and growth characteristics of infectious bursal disease virus. J Virol 18, 227-234. Nicolson, L., Penha-Goncalves, M. N., Keanie, J. L., Logan, N. A., Argyle, D. J. & Onions, D. E. (1999). Cloning and sequencing of horse interleukin-12 and interleukin-18 cDNAs. Immunogenetics 50, 94-97. Niikura, M., Matsuura, Y., Hattori, M., Onuma, M. & Mikami, T. (1991). Characterization of haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus expressed by a recombinant baculovirus. Virus Res 20, 31-43. Nishikawa, K., Morishima, T., Toyoda, T., Miyadai, T., Yokochi, T., Yoshida, T. & Nagai, Y. (1986). Topological and operational delineation of antigenic sites on the HN glycoprotein of Newcastle disease virus and their structural requirements. J Virol 60, 987-993. Ogawa, R., Yanagida, N., Saeki, S., Saito, S., Ohkawa, S., Gotoh, H., Kodama, K., Kamogawa, K., Sawaguchi, K. & Iritani, Y. (1990). Recombinant fowlpox viruses inducing protective immunity against Newcastle disease and fowlpox viruses. Vaccine 8, 486-490. Okamoto, I., Kohno, K., Tanimoto, T., Ikegami, H. & Kurimoto, M. (1999). Development of CD8+ effector T cells is differentially regulated by IL-18 and IL-12. J Immunol 162, 3202-3211. Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., Torigoe, K., Okura, T., Nukada, Y., Hattori, K. & et al. (1995). Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378, 88-91. Okano, F., Satoh, M., Ido, T. & Yamada, K. (1999). Cloning of cDNA for canine interleukin-18 and canine interleukin-1beta converting enzyme and expression of canine interleukin-18. J Interferon Cytokine Res 19, 27-32. Omar, A. R., Kim, C. L., Bejo, M. H. & Ideris, A. (2006). Efficacy of VP2 protein expressed in E. coli for protection against highly virulent infectious bursal disease virus. J Vet Sci 7, 241-247. Onunkwo, O. & Momoh, M. A. (1981). Characterization of a Newcastle disease virus isolated from a parrot (Psittacus erythracus) in Nigeria. J Wildl Dis 17, 463-465. Peeples, M. E. & Bratt, M. A. (1984). Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein incorporation into particles and decreased infectivity. J Virol 51, 81-90. Pennington, T. H. (1977). Isatin-beta-thiosemicarbazone causes premature cessation of vazh_TW
dc.identifier.urihttp://hdl.handle.net/11455/14125-
dc.description.abstract養禽事業為國內重要畜牧產業之一,當雞隻感染傳染性華氏囊病毒 (Infectious bursal disease virus, IBDV)、新城病毒 (Newcastle disease virus, NDV) 或禽痘毒 (Fowlpox virus, FPV) 常導致養禽業者嚴重之經濟損失。IBDV主要造成2~3週齡以下雞隻華氏囊細胞壞死導致嚴重免疫抑制,極易感染其他病原致死;而感染於3~8週齡雞隻則造成嚴重臨床症狀及高死亡率,目前防治本病仍以疫苗免疫為主,其中IBDV (VP2) 蛋白為誘發宿主產生中和抗體,因此VP2可作為免疫保護性抗原用於防治本病。NDV感染雞隻通常為急性傳染導致高死亡率,目前對於本病之防治措施亦以疫苗免疫為主,其中NDV (HN) 蛋白能誘發宿主產生中和抗體,因此HN可作為免疫保護性抗原用於防治本病。FPV為目前所知最大且最複雜之病毒,其基因體容量大且穩定、具有許多非必需基因可承載大分子外源基因,可製成多價疫苗 (multivalent vaccine),除對FPV感染有預防效果外,同時能預防含外源基因之病原所造成之疾病;若能同時構築具生物性佐劑之細胞素基因,則可提升其免疫反應將更具保護效力,於疫苗研發方面具有廣泛應用價值。本研究以FPV作為載體 (vector) 承載IBDV (VP2)、NDV (HN) 等禽病抗原基因,或搭配雞介白素-12 (chicken interleukin-12)、雞介白素-18 (chicken interleukin-18) 等禽類細胞素佐劑基因以提升雞隻免疫力,作為防治IBDV、NDV、FPV之禽用多價疫苗。結果顯示以FPV系統表現之rVP2、rHN、rchIL-12、rchIL-18等重組蛋白,均有相似於原始蛋白之活性,免疫雞隻能促進其體液性或細胞性免疫反應,有效提升保護雞隻防禦IBDV或NDV強毒株之攻擊。本研究研發之多種禽用重組禽痘毒疫苗將具有商品化之潛力,可提供防治禽類重要傳染病之疫苗選項之ㄧ。zh_TW
dc.description.abstractThe poultry industry is one of the important livestock industries in Taiwan. One of the major problems faced by the poultry industry is the loss of productivity due to fatal infectious diseases; for instance, infectious bursal disease virus (IBDV), Newcastle disease virus (NDV) and Fowlpox virus (FPV). The main clinical sign of IBDV in chickens younger than two-three weeks of age is immunosuppression resulting from bursal cell necrosis. At three to eight weeks old chickens, IBDV can cause serious clinical symptoms and high mortality. Most protection securities of IBD rely on vaccination. IBDV (VP2) protein can induce host to produce neutralizing antibody; that is why VP2 protein can be an immune protective antigen for disease control. NDV infection usually causes high mortality resulting from acute transmission, so vaccination is a particularly important method to control NDV in poultry. The HN protein of NDV are able to induce neutralizing antibody production for disease prevention. FPV is the biggest and most complicated virus with many advantages for multivalent recombinant vector vaccine development, such as large genome and non-essential genes for expression of foreign antigens. As a safe vehicle, recombinant FPV (rFPV) can prevent not only FPV infection but also diseases of inserted heterologous pathogen genes. Cytokines are kinds of host immunomodulators and great bioactivity adjuvants. Construct with cytokine genes in rFPV will have broad applications in vaccine development by enhancing host immunity. In this experiment, we used FPV as a vector to insert VP2 or HN genes sequences as a multivalent vaccine which can induce chicken immunity against NDV, IBDV and FPV, and co-expressed chicken interleukin-12 (chIL-12) or chIL-18 to increase immunity. The results have shown that rVP2, rHN, rchIL-12 and rchIL-18 synthesized by rFPV have similar bioactivity to that of natural proteins and can protect vaccinated chickens effectively against virulent NDV or IBDV challenge by increasing humoral immunity or cell mediated immunity. This means that rFPV has the potential to be a commercial vaccine which can prevent fatal infectious diseases in poultry.en_US
dc.description.tableofcontents中文摘要………………………………………………………………………... i 英文摘要………………………………………………………………………... ii 目錄……………………………………………………………………………... iv 表次……………………………………………………………………………... xi 圖次………………………………………………………………………...…… xii 第一章 文獻探討 第一節 禽痘 (Fowlpox, FP) …………………………………………..…… 1 1.1 禽痘之歷史背景……………………………………………………… 1 1.2 禽痘之特性…………………………………………………………… 1 1.3 禽痘毒之特性………………………………………………………… 2 1.4 禽痘毒之基因體及蛋白質…………………………………………… 3 1.5 禽痘載體疫苗之應用………………………………………………… 3 第二節 傳染性華氏囊病 (Infectious bursal disease, IBD)………………… 5 2.1 傳染性華氏囊病之歷史背景………………………………………… 5 2.2 傳染性華氏囊病之特性……………………………………………… 5 2.3 傳染性華氏囊病毒之特性…………………………………………… 6 2.4 傳染性華氏囊病毒之基因體及蛋白質……………………………… 7 2.5 傳染性華氏囊病疫苗之應用………………………………………… 8 第三節 新城病 (Newcastle disease, ND) ………………………..………… 10 3.1 新城病之歷史背景…………………………………………………… 10 3.2 新城病之特性………………………………………………………… 11 3.3 新城病毒之特性 …………………………………………………….. 12 3.4 新城病毒之基因體及蛋白質………………………………………… 12 3.5 新城病疫苗之應用…………………………………………………… 13 第四節 雞介白素-12 (Chicken interleukin-12, chIL-12)…………………… 16 4.1介白素-12之歷史背景 ………………………………………………. 16 4.2介白素-12之特性 ……………………………………………………. 16 4.3雞介白素-12之應用…………………………………………………... 17 第五節 雞介白素-18 (Chicken interleukin-18, chIL-18)…………………… 18 5.1介白素-18之歷史背景………………………………………………... 18 5.2介白素-18之特性 ……………………………………………………. 18 5.3雞介白素-18之應用…………………………………………………... 19 第二章 雞介白素-12或雞介白素-18/禽痘載體疫苗之研發 第一節 摘要…………………………………………………………………. 21 第二節 前言…………………………………………………………………. 22 第三節 材料與方法…………………………………………………………. 24 3.1 重組禽痘毒之構築…………………………………………………… 24 3.1.1供試病毒及細胞…………………………………………………… 24 3.1.1.1禽痘毒 (Fowlpox virus, FPV) …………………………………. 24 3.1.1.2初代雞胚纖維芽母細胞 (Chicken embryo fibroblast, CEF)….. 24 3.1.1.3雞胚纖維芽母細胞株 (DF1 cell line) …………………………. 24 3.1.1.4病毒增殖………………………………………………………... 25 3.1.1.5測定病毒力價 (50% tissue culture infectious dose, TCID50)….. 25 3.1.2重組質體之構築…………………………………………………… 25 3.1.2.1 FPV F11L 基因之增幅………………………………………… 25 3.1.2.2 chIL-12或chIL-18 基因之增幅………………………………. 26 3.1.2.3綠色螢光蛋白 (GFP) 基因之增幅……………………………. 28 3.1.2.4基因選殖………………………………………………………... 28 3.1.2.5基因產物及載體DNA之處理………………………………….. 29 3.1.2.6連結 (ligation) …………………………………………………. 30 3.1.2.7轉形 (transformation) ………………………………………….. 30 3.1.2.8篩選及定序……………………………………………………... 30 3.1.3重組禽痘毒之構築………………………………………………… 30 3.1.3.1同源重組 (homologous recombination) ……………………….. 30 3.1.3.2重組禽痘毒之斑純化 (plaque-cloned) ………………………... 31 3.1.3.3重組禽痘毒力價 (TCID50) 之測定……………………………. 32 3.2重組禽痘毒基因產物之分析…………………………………………. 32 3.2.1 重組禽痘毒表現mRNA之分析………………………………….. 32 3.2.2 偵測重組禽痘毒表現蛋白之抗體製備…………………………... 32 3.2.2.1基因選殖………………………………………………………... 32 3.2.2.2 E. coli蛋白質 (echIL-12、echIL-18) 之表現及純化………….. 33 3.2.2.3 E. coli表現蛋白 (echIL-12、echIL-18) 之分析……………….. 34 3.2.2.4 E. coli表現蛋白 (echIL-12、echIL-18) 之濃度測定………….. 35 3.2.2.5 E. coli表現蛋白 (echIL-12、echIL-18) 之抗體製備………….. 35 3.2.3重組禽痘毒表現蛋白之分析……………………………………… 35 3.2.3.1細胞溶解液 (cell lysate) 之製備……………………………… 35 3.2.3.2重組禽痘毒表現蛋白之濃度測定……………………………... 36 3.3活性試驗………………………………………………………………. 36 3.3.1 供試動物…………………………………………………………... 36 3.3.2 丙型干擾素 (IFN-γ) 之檢測…………………………………….. 37 3.3.3 試驗一:重組禽痘毒表現蛋白接種初代雞脾臟細胞試驗………. 37 3.3.4 試驗二:重組禽痘毒表現蛋白接種SPF雞隻試驗………………. 38 3.3.5 試驗三:重組禽痘毒接種接種SPF雞隻試驗……………………. 38 3.4 統計分析……………………………………………………………… 39 第四節 結果…………………………………………………………….…… 40 4.1 重組禽痘毒之構築 ………………………………………………….. 40 4.1.1重組質體pchIL-12、pchIL-18之構築……………………………. 40 4.1.2重組禽痘毒之製備………………………………………………… 41 4.2 重組禽痘毒之篩選及純化…………………………………………… 41 4.3 重組禽痘毒表現mRNA之分析……………………………………... 42 4.4 重組禽痘毒表現蛋白之分析及定量………………………………… 42 4.5 活性試驗……………………………………………………………… 42 4.5.1試驗一:重組禽痘毒表現蛋白接種初代雞脾臟細胞試驗……….. 43 4.5.2試驗二:重組禽痘毒表現蛋白接種SPF雞隻試驗……………….. 43 4.5.3試驗三:重組禽痘毒接種SPF雞隻試驗………………………….. 43 第五節 討論…………………………………………………………………. 55 第三章 傳染性華氏囊病/禽痘二價載體疫苗之研發 第一節 摘要…………………………………………………………………. 61 第二節 前言…………………………………………………………………. 62 第三節 材料與方法…………………………………………………………. 64 3.1 重組禽痘毒之構築…………………………………………………… 64 3.1.1供試病毒及細胞…………………………………………………… 64 3.1.1.1禽痘毒 (Fowlpox virus, FPV) …………………………………. 64 3.1.1.2傳染性華氏囊病毒 (Infectious bursal disease virus, IBDV)….. 64 3.1.1.3雞胚纖維芽母細胞株 (DF1 cell line)………………………….. 64 3.1.1.4病毒增殖………………………………………………………... 64 3.1.1.5測定病毒力價 (50% tissue culture infectious dose, TCID50)….. 65 3.1.2重組質體之構築…………………………………………………… 65 3.1.2.1 FPV PC-1或TK基因之增幅…………………………………... 65 3.1.2.2 IBDV (VP2) 基因之增幅……………………………………… 66 3.1.2.3綠色螢光蛋白 (GFP) 或紅色螢光蛋白 (RFP) 基因之增幅... 67 3.1.2.4基因選殖………………………………………………………... 67 3.1.2.5基因產物及載體DNA之處理………………………………….. 68 3.1.2.6連結 (ligation) …………………………………………………. 69 3.1.2.7轉形 (transformation) ………………………………………….. 69 3.1.2.8篩選及定序……………………………………………………... 69 3.1.3重組禽痘毒之構築………………………………………………… 70 3.1.3.1同源重組 (homologous recombination) ……………………….. 70 3.1.3.2重組禽痘毒之斑純化 (plaque-cloned)………………………… 70 3.1.3.3重組禽痘毒力價 (TCID50) 之測定……………………………... 71 3.2重組禽痘毒基因產物之分析…………………………………………. 71 3.2.1重組禽痘毒表現mRNA之分析…………………………………… 71 3.2.2偵測重組禽痘毒表現蛋白之抗體製備…………………………… 71 3.2.2.1基因選殖………………………………………………………... 71 3.2.2.2 E. coli蛋白質 (eVP2) 之表現及純化………………………… 72 3.2.2.3 E. coli表現蛋白 (eVP2) 之分析……………………………… 73 3.2.2.4 E. coli表現蛋白 (eVP2) 之濃度測定………………………… 74 3.2.2.5 E. coli表現蛋白 (eVP2) 之抗體製備………………………… 74 3.2.3重組禽痘毒表現蛋白之分析……………………………………… 74 3.2.3.1細胞溶解液 (cell lysate) 之製備……………………………… 74 3.2.3.2重組禽痘毒表現蛋白之濃度測定……………………………... 75 3.3重組禽痘毒之效力試驗……………………………………………... 75 3.3.1供試動物………………………………………………………….. 75 3.3.2供試病毒………………………………………………………….. 75 3.3.3安全試驗………………………………………………………….. 76 3.3.3.1試驗一:翼膜穿刺試驗………………………………………... 76 3.3.3.2試驗二:rVP2有效劑量試驗………………………………….. 76 3.3.3.3試驗三:rVP2混合細胞素佐劑試驗………………………….. 77 3.3.4效力試驗………………………………………………………….. 77 3.3.4.1華氏囊肉眼及組織病理學分級………………………………. 77 3.3.4.2血清中和試驗 (serum neutralization test, SN test) …………... 78 3.3.4.3丙型干擾素 (IFN-γ) 之檢測…………………………………. 78 3.4統計分析……………………………………………………………... 79 第四節 結果…………………………………………………………………. 80 4.1 重組禽痘毒之構築………………………………………………….. 80 4.1.1重組質體pIBDV/VP2 (PC-1/GFP) 之構築……………………... 80 4.1.2重組質體pIBDV/VP2 (TK/RFP) 之構築……………………….. 80 4.1.3重組禽痘毒之製備……………………………………………….. 81 4.2 重組禽痘毒之篩選及純化………………………………………….. 81 4.3 重組禽痘毒表現mRNA之分析……………………………………. 82 4.4 重組禽痘毒表現蛋白之分析及定量……………………………….. 83 4.5 免疫效力試驗……………………………………………………….. 83 4.5.1 試驗一:翼膜穿刺試驗…………………………………………... 83 4.5.2 試驗二:rVP2有效劑量試驗…………………………………….. 84 4.5.3 試驗三:rVP2搭配細胞素佐劑試驗…………………………….. 85 第五節 討論…………………………………………………………………. 103 第四章 新城病/禽痘二價載體疫苗之研發 第一節 摘要…………………………………….. ………………………….. 108 第二節 前言…………………………………………………………………. 109 第三節 材料與方法…………………………………………………………. 111 3.1 重組禽痘毒之構築…………………………………………………… 111 3.1.1供試病毒及細胞…………………………………………………… 111 3.1.1.1 禽痘毒 (Fowlpox virus, FPV) ………………………………… 111 3.1.1.2 新城病毒 (Newcastle disease virus, NDV) …………………... 111 3.1.1.3 雞胚纖維芽母細胞株 (DF1 cell line) ………………………... 111 3.1.1.4 病毒增殖……………………………………………………….. 111 3.1.1.5 測定病毒力價………………………………………………….. 112 3.1.2重組質體之構築…………………………………………………… 112 3.1.2.1 FPV TK 基因之增幅…………………………………………... 112 3.1.2.2 NDV (HN) 基因之增幅………………………………………... 113 3.1.2.3 紅色螢光蛋白 (RFP) 基因之增幅…………………………… 114 3.1.2.4 基因選殖……………………………………………………….. 114 3.1.2.5 基因產物及載體DNA之處理………………………………… 115 3.1.2.6 連結 (ligation) ………………………………………………… 116 3.1.2.7 轉形 (transformation) ……………………………………..….. 116 3.1.2.8 篩選及定序…………………………………………………….. 116 3.1.3重組禽痘毒之構築 ……………………………………………….. 116 3.1.3.1 同源重組 (homologous recombination)………………………. 116 3.1.3.2 重組禽痘毒之斑純化 (plaque-cloned)……………………….. 117 3.1.3.3 重組禽痘毒力價 (TCID50) 之測定…………………………... 118 3.2重組禽痘毒基因產物之分析……………………………………...….. 118 3.2.1 重組禽痘毒表現mRNA之分析……………….…………………. 118 3.2.2 偵測重組禽痘毒表現蛋白之抗體製備 ……………………...….. 118 3.2.2.1基因選殖………………………………………………………... 118 3.2.2.2 E. coli蛋白質 (eHN) 之表現及純化………………………….. 119 3.2.2.3 E. coli表現蛋白 (eHN) 之分析……………………………….. 120 3.2.2.4 E. coli表現蛋白 (eHN) 之濃度測定………………………….. 120 3.2.2.5 E. coli表現蛋白 (eHN) 之抗體製備………………………….. 121 3.2.3重組禽痘毒表現蛋白之分析………………………..…………….. 121 3.2.3.1細胞溶解液 (cell lysate) 之製備……………………………… 121 3.2.3.2重組禽痘毒表現蛋白之濃度測定……………………………... 122 3.3 重組禽痘毒之效力試驗……………………………………..……….. 122 3.3.1 供試動物……………………………………………………….….. 122 3.3.2 供試病毒…………………………………………………….…….. 122 3.3.3 安全試驗…………………………………………………….…….. 123 3.3.3.1 試驗一:翼膜穿刺試驗………………………………..……….. 123 3.3.3.2 試驗二:rHN、rHN/rchIL-12之有效劑量試驗………………… 123 3.3.3.3 試驗三:rHN搭配細胞素佐劑rchIL-12試驗…………………. 123 3.3.3.4 試驗四:rHN、rHN/rchIL-18之有效劑量試驗………………… 124 3.3.3.5 試驗五:rHN搭配細胞素佐劑rchIL-18試驗…………………. 124 3.3.3.6 試驗六:rHN免疫一次試驗…………………………………… 124 3.3.4效力試驗………………………………………………………..….. 125 3.3.4.1 血球凝集抑制試驗 (hemagglutination inhibition test, HI test) 125 3.3.4.2 丙型干擾素 (IFN-γ) 之檢測…………………………………. 126 3.4 統計分析…………………………………………………………….... 127 第四節 結果………………………………………………………………..... 128 4.1 重組禽痘毒之構築………………………………………………..….. 128 4.1.1重組質體pNDV/HN之構築……………………………………….. 128 4.1.2重組禽痘毒之製備……………………………………………..….. 128 4.2 重組禽痘毒之篩選及純化…………………………………..……….. 129 4.3 重組禽痘毒表現mRNA之分析…………………………………….. 130 4.4 重組禽痘毒表現蛋白之分析及定量………………………………… 130 4.5 免疫效力試驗……………………………………………………….... 131 4.5.1 試驗一:翼膜穿刺試驗…………………………………...……….. 131 4.5.2 試驗二:rHN、rHN/rchIL-12之有效劑量試驗…………….……… 131 4.5.3 試驗三:rHN搭配細胞素佐劑rchIL-12試驗………….….……… 132 4.5.4 試驗四:rHN、rHN/rchIL-18之有效劑量試驗……………………. 133 4.5.5 試驗五:rHN搭配細胞素佐劑rchIL-18試驗……..……………… 134 4.5.6 試驗六:rHN免疫一次試驗…………………………...………….. 135 第五節 討論…………………………………………………………………. 154 第五章 傳染性華氏囊病/新城病/禽痘三價載體疫苗之研發 第一節 摘要…………………………………………………………………. 160 第二節 前言…………………………………………………………………. 161 第三節 材料與方法…………………………………………………………. 163 3.1 重組禽痘毒之構築…………………………………………………… 163 3.1.1供試病毒及細胞…………………………………………………… 163 3.1.1.1 禽痘毒 (Fowlpox virus, FPV).………………………………... 163 3.1.1.2 傳染性華氏囊病毒 (Infectious bursal disease virus, IBDV)…. 163 3.1.1.3 新城病毒 (Newcastle disease virus, NDV)…………………… 163 3.1.1.4 雞胚纖維芽母細胞株 (DF1 cell line)………………………… 163 3.1.1.5 病毒增殖……………………………………………………….. 164 3.1.1.6 測定病毒力價………………………………………………….. 164 3.1.2重組質體之構築…………………………………………………… 164 3.1.2.1 FPV TK 基因之增幅…………………………………………... 164 3.1.2.2 IBDV (VP2) 或NDV (HN) 基因之增幅……………………… 165 3.1.2.3 紅色螢光蛋白 (RFP) 基因之增幅…………………………… 166 3.1.2.4 基因選殖……………………………………………………….. 166 3.1.2.5 基因產物及載體DNA之處理………………………………… 167 3.1.2.6 連結 (ligation) ………………………………………………… 168 3.1.2.7 轉形 (transformation) ……………………………………..….. 168 3.1.2.8 篩選及定序…………………………………………………….. 168 3.1.3重組禽痘毒之構築………………………………………………… 169 3.1.3.1同源重組 (homologous recombination)………………………... 169 3.1.3.2重組禽痘毒之斑純化 (plaque-cloned)………………………… 169 3.1.3.3重組禽痘毒力價 (TCID50) 之測定……………………………. 170 3.2重組禽痘毒基因產物之分析…………………………………………. 170 3.2.1重組禽痘毒表現mRNA之分析…………………………………… 170 3.2.2重組禽痘毒表現蛋白之分析……………………………………… 171 3.2.2.1細胞溶解液 (cell lysate) 之製備……………………………… 171 3.2.2.2重組禽痘毒表現蛋白之濃度測定……………………………... 171 第四節 結果…………………………………………………………………. 172 4.1 重組禽痘毒之構築…………………………………………………… 172 4.1.1重組質體pIBDV/VP2-NDV/HN之構築………………………….. 172 4.1.2重組禽痘毒之製備………………………………………………… 173 4.2 重組禽痘毒之篩選及純化…………………………………………… 173 4.3 重組禽痘毒表現mRNA之分析……………………………………... 174 4.4 重組禽痘毒表現蛋白之分析及定量………………………………… 174 第五節 討論…………………………………………………………………. 186 第六章 總結與展望……………………………………………………………. 190 參考文獻………………………………………………………………………... 195 附錄-修業期間發表之論文……………………………………………………. 215zh_TW
dc.language.isoen_USzh_TW
dc.publisher獸醫學系暨研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1410201020234900en_US
dc.subjectfowlpox virusen_US
dc.subject禽痘毒zh_TW
dc.subjectvector vaccineen_US
dc.subjectIBDen_US
dc.subjectNDen_US
dc.subjectchicken IL-12en_US
dc.subjectchicken IL-18en_US
dc.subject載體疫苗zh_TW
dc.subject傳染性華氏囊病zh_TW
dc.subject新城病zh_TW
dc.subject雞介白素-12zh_TW
dc.subject雞介白素-18zh_TW
dc.title利用禽痘毒製造蛋白質技術之建立zh_TW
dc.titleTechnologies for protein synthesis using fowlpox virus recombinanten_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:獸醫學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.