Please use this identifier to cite or link to this item:
標題: 以氣相層析質譜法探討Amphenicol類抗生素之熱穩定性
Study of Heat Stability of Amphenicols by Gas Chromatography-Mass Spectrometry
作者: 李晏汶
Li, Yan-Wwn
關鍵字: amphenicols;氯黴素;GC/MS;antibiotic;heat stability;氣相層析質譜;抗生素加熱;熱穩定性
出版社: 獸醫學系暨研究所
引用: 參考文獻 王明光,王敏昭。實用儀器分析。合計圖書出版社。台北,2003。 吳永寧。獸藥殘留檢測與監控技術。化學工業出版社。北京,2007。 李茂榮。漫談影響質譜於濫用藥物定量檢測之因素。管制藥品簡訊17:1¬-3,2003。 李鵬,邱月明,蔡慧霞,孔瑩,唐英章,王大寧,謝孟峽。氣相色譜-質譜聯用法測定動物組織中氯黴素、氟甲磺氯黴素與甲磺氯黴素的殘留量。色譜24:14-18,2006。 國科會精密儀器發展中心。質譜分析術專輯初版。民全書局。新竹,2002。 賀利民,蘇怡娟,曾振靈,黃顯會。氯黴素類獸藥的三甲基矽衍生物的質譜特徵極其殘留測定。分析測試學報25:43-46,2006。 黃曉容,鄭晶,楊方。放射性受體免以分析方法快速篩檢烤鰻中氯黴素殘留。水產養殖24: 16-18,2003。 農委會,輸日水產品之動物用藥參考基準(民國95年4月)。 衛生署,動物用藥殘留標準修正「動物用藥殘留標準」第3條條文(衛署食字第0940410948號)。 Abdennebi EH, Khales N, Sawchuk RJ, Stowe CM. Thiamphenicol pharmacokinetics in sheep. J Vet Pharmacol Therap 17: 12-16, 2008a. Abdennebi EH, Sawchuk RJ, Stowe CM. Thiamphenicol pharmacokinetics in beef and dairy cattle. J Vet Pharmacol Therap 17: 365-368, 2008b. Aldana I, Fos D, Gonzalez Peñas E, Gazzaniga A, Gianesello V, Ceppi Monti N, Figini PG, Zato MA, Bruseghini L, Esteras A. Ocular pharmacokinetics of thiamphenicol in rabbits. Arzneimittelforschung 42: 1236-1239, 1992. Anadón A, Bringas P, Martínez-Larrañaga MR, Diaz MJ. Bioavailability, pharmacokinetics and residues of chloramphenicol in the chicken. J Vet Pharmacol Therap 17: 52-58, 1994. Anadón A, Martínez MA, Martínez M, Ríos A. Plasma and tissue depletion of florfenicol and florfenicol-amine in chickens. J Agric Food Chem 56: 11049-11056, 2008. Atef M, Atta AH, Amber AM. Pharmacokinetics of chloramphenicol in normal and Escherichia coli infected chicken. Br Poultry Sci 32: 589-596, 1991. Bernarde ME. Antibiotic residues in shellfish after cooking. J Am Diet Assoc 33: 1145-1149, 1957. Brock TD. Chloramphenicol. Mol Biol Rev 25: 32-48, 1961. Cannavan A, Hewitt SA, Blanchflower WJ, Kennedy DG. Gas chromatographic-mass spectrometric determination of sulfamethazine in animal tissues using a methyl/trimethylsilyl derivative. Analys 121: 1457-1461, 1996. Chen TB, Deng WH, Lu WH, Chen RM, Rao PF. Detection of residual antibiotic in honey with capillary electrophoresis. Se Pu 19: 91-93, 2001. Dowling PM. Chloramphenicol, thiamphenicol, and florfenicol. In: Giguère S, Prescott JF, Baggot JD, Walker RD, Dowling PM, ed. Antimicrobial therapy in veterinary medicine. 4th edition. Wiley Blackwell, Iowa, 241-248, 2006. Drincic HK, Bazulic D, Postruznik JS, Grubelic M, Stuhne G. Matrix soild-phase dispesion extraction and gas chromatography determination in muscle tissue. J Agric Food Chem 51: 871-875, 2003. Ehrlich JQ, Bartz QR, Smith RM, Joslyn DA, Burkholder PR. Chloromycetin a new antibiotic from a soil actinomycete. Science 106: 417, 1947. Eipstein RL, Randecker V, Corrao P, Keeton JT, Cross HR. Influence of heat and cure preservatives on residues of sulfamehazine, chloramphenicol, and cyromazine in muscle tissue. J Agric Food Chem 36: 1009-1012, 1988. Escanilla KO, Carlin AF, Ayers JC. Effect of storage and cooking on chlortetracycline residues in meat. Food Technol 13: 520-524, 1959. European Medicine Agency Veterinary Medicine and Inspections. Commission for medicinal products for veterinary use:thiamphenicol (extension to pigs and extrapolation to all) summery report (6). EMEA/CVMP/162614/2006-final. European Medicine Agency Veterinary Medicine and Inspections. Commission for medicinal products for veterinary use:florfencol (extension to all food production species) summery report (6). EMEA/MRL/822/02-final. Feng JB, Jia XP, Li LD. Tissue distribution and elimination of florfenicol in tilapia (Oreochromis niloticus X O. caureeus) after a single oral administration in freshwater and seawater at 28 ℃. Aquaculture 276: 29-35, 2008. Furusawa N, Hanabusa R. Cooking effects on sulfonamide residues in chicken thigh muscle. Food Res Int 35: 37-42, 2002. Gartverg A, Shishani I, Hoffman M. Determination of chloramphenicol in animal tissue and urine liquid chromatography-tendem mass spectrometry versus gas chromatography-mass spectrometry. Analytica Chimica Acta 483: 125-135, 2003. Gassner B, Wuethrich A, Pharmacokinetic and toxicological aspects of the medication of beef-type calves with an oral formulation of chloramphenicol palmitate. J Vet Pharmacol Therap 17: 279-283, 1994. Graham RLJ, Graham C, McMullan G. Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 6: 26, 2007. Gratacós-Cubarsí M, Garcia AF, Picouet P, Pamplona AV, Regueiro JAG, Castellari M. Formation of tetracyclines degradation products in chicken and pig meat under different thermal processing conditions. J Agric Food Chem 55: 4610-4616, 2007. Hayes JM, Eichman J, Katz T, Gilewics R. Stability of florfenicol in drinking water. J AOAC Int 86: 22-29, 2003. Heal CF, Buettner PG, Cruickshank R, Graham D, Browning S, Pendergast J, Drobetz H, Gluer R, Lisec C. Does single application of topical chloramphenicol to high risk sutured wounds reduce incidence of wound infection after minor surgery? Prospective randomised placebo controlled double blind trial. Br Med J 338: a 2812, 2009. Hoffmann ED, Stroobant V. Ion source. In: Mass spectrometry principle and application. 2nd edition. Wiley, Chichester, 11-24, 2002. Hofinger DM, Cardona L, Mertz GJ, Davis LE. Tularemic Meningitis in the United States. Arch Neurol 66: 523-527, 2009. Ibrahim A, Moats WA. Effect of cooking procedures on oxytetracycline residues in lamb muscle. J Agric Food Chem 42: 2561-2563, 1994. International Agency for Research on Cancer (IARC) monographs on evaluation of carcinogenic risks to humans 10: 85-98, 1976. Ismail-Fitry MR, Jinap S, Jamilah B, Saleha AA. Effect of deep-frying at different temperature and time on sulfonamide residues in chicken meat-balls. J Food Drug Anal 16: 81-86, 2008. Johnson TN. The sevelopment of drug metaboilising enzymes and their influence on the susceptibility to adverse drug reactions in children. Toxicology 192: 37-48, 2003. Kitts DD, Yu CWY, Aoyama RG, Burt HM, McErlane KM. Oxytetracycline degradation in thermally processed farmed salmon. J Agric Food Chem 40: 1977-1981, 1992. Konecny S. Effect of temperature and time on residues of the biologic activity of some kind of antibiotics in milk. Veternarstvi 28: 409-410, 1978. Lane VM, Villarroel A, Wetzlich SE, Clifford A, Taylor I, Craigmill AL. Tissue residues of florfenicol in sheep. J Vet Pharmacol Therap 31: 178-180, 2007. Lewbart GA, Papivh MG, Whitt-Smith D. Pharmacokinetics of flofenicol in red pacu (Piaractus brachtpimum) after single-dose intramuscular administration. J Vet Pharmacol Ther 28: 317-319, 2005. Li TL, Chung-Wang YJ , Shih YC. Determination and confirmation of chloramphenicol residues in swine muscle and liver. J Food Sci 61: 21-28, 2006. Liu WL, Lee RJ, Lee MR. Supercritical fluid extraction in situ derivatization for simultaneous determination of chloramphenicol, florfenicol and thiamphenicol in shrimp. Food Chem 121: 707-802, 2010. Lolo M, Pedreira S, Mirnda J M, Vazquez BI, Franco CM, Cepeda A, Fente C. Effect of cooking on enrofloxacin residues in chicken tissue. Food Addi Contam 23:988-993, 2006. Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437-473, 2001. Marciniec B, Stawny M, Danikiewicz W, Spólink G, Jaroszkiewicz E, Needham M. Identification of radiolysis products of solid thiamphenicol. J Pharm Biomed Anal. Article in Press, 2010. Marciniec B, Stawny M, Kachlicki P, Jaroszkiewicz E, Needham M. Radiostability of florfenicol in solid state. Analy Sci 25: 1255-1260, 2009. María RG, Roberto AO, Luis DM, María FS. Simultaneous determination of cloramphenicol, salicylic acid and resorcinol by capillary zone electrophoresis and its application to pharmaceutical dosage forms. Talanta 61: 233-238, 2003. Moats WA. The effect of processing on veterinary residues in foods. Advance in Experimental Medicine and Biology 459: 223-241, 1999. Nagata T, Oka H. Detection of residual chloramphenicol, florfenicol, and thiamphenicol in yellowtail fish muscle by capillary gas chromatography-mass spectrometry. J Agic Food Chem 44 : 1280-1284, 1996. Nagata T, Saeki M. Simultaneous determination of thiamphenicol, florfenicol, and chloramphenicol residues in muscles of animals and cultured fish by liquid chromatography. J Liquid Chromatogr 15: 2045 -2056, 1992. Nijhof W, Kroon AM. The interference of chloramphenicol and thiamphenicol with the biogenesis of mitochondria in animal tissues. A possible clue to the toxic action. Postgrad Med J 5: 53-59, 1974. Papich MG, Riviere JE. Chloramphenicol and derivatives, marcolides, lincosamides, and miscellaneous antimicrobials. In: Adams HR, ed. Veterinary pharmacology and therapeutics. 8th edition. Wiley Blackwell, Iowa, 868-897, 2001. Papich MG, Riviere JE. Chloramphenicol and derivatives, marcolides, lincosamides, and miscellaneous antimicrobials. In: Riviere JE, Papich MG, ed. Veterinary pharmacology and therapeutics. 9th edition. Wiley-Blackwell, Iowa, 945-982, 2009. Pfenning AP, Munns RK, Turnipseed SB, Roybal JE, Holland DC, Long AR, Plakas SM. Determination and confirmation of identities of flumequine and nalidixic, oxolinic, and piromidic acids in salmon and shrimp. J AOAC Int 79: 1227-1235, 1996. Plomp TA, Baert L, Maes RA. Treatment of recurrent chronic bacterial prostatitis by local injection of thiamphenicol into prostate. Urology 15: 542-547, 2004. Prescott JF. Chloramphenciol, thiamphenicol, and florfenicol In: Prescott JF, Baggot JD, Walker RD, ed. Antimicrobial therapy in veterinary medicine. 3rd edition. Wiley Blackwell, Iowa, 263-274, 2000. Richmond DE. Thiamphenicol as an immunosuppressant in active system lupus erythematosus with nephritis. Internal Med J 9: 670-675, 2008. Rose MD, Bygrave J, Farrington WHH, Shearer G. The effect of cooking on veterinary drug residues in food: 4. Oxytetracycline. Food Addi Contam 13: 275-286, 1996. Rose MD, Bygrave J, Farrington WHH, Shearer G. The effect of cooking on veterinary drug residues in food: 8. Benzylpenicillin. Analyst 122: 1095-1099, 1997a. Rose MD, Farrington WHH, Shearer G. The effect of cooking on veterinary drug residues in food: 3. Sulphamethazine (sulphadimidine). Food Addi Contam 12: 739-750, 1995. Rose MD, Farrington WHH, Shearer G. The effect of cooking on veterinary drug residues in food : 7. ivermectin. Food Addi Contam 15: 157-161, 1998. Rose MD, Rowley L, Shearer G, Farrington WHH. Effect of cooking on veterinary drug residues in food: 6. lasalocid. J Agric Food Chem 45: 927-930, 1997b. Samuelsen OB, Hjeltnes B, Glette J. Effecty of orally administered florfenicol in the treatment of furunculosis in atlantic salmon. J Aquatic Animal Health 10: 56-61, 1998. Santos L, Barbosa J, Castilho MC, Ramos F, Ribeiro CAF, Silveira MIN. Determination of chloramphenicol residues in rainbow trouts by gas chromatography- mass spectrometry and liquid chromatography- tandem mass spectrometry. Analytica Chimica Acta 529: 249-256, 2004. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413: 814-821, 2001. Scortichini G, Annunziata L, Haouet MN, Benedetti F, Krusteva I, Galarini R. ELISA qualitative screening of chloramphenicol in muscle, eggs, honey and milk: method validation according to the Commission Decision 2002/657/EC criteria. Analytica Chimica Acta 535:43-48, 2005. Shakila RJ, Vyla SAP, Kumar RS, Jeyasekaran G, Jasmine G. Stability of chloramphenicol residues in shrimp subjected to heat processing treatments. Food microbio 23: 47-51, 2006. Shen HY, Jiang HL. Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC-UVD, GC-ECD, GC-MS-EI-SIM and GC-MS-EI-SIM methods. Analytica Chimica Acta 535: 33-41, 2005. Shen J, Wu X, Hu D, Jiang H. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infected broiler chicken. RVS 73: 137-140, 2002. Shen J, Xia X, Jiang H, Li C, Li J, Li X, Ding S. Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry. J Chromatogr B 877:1523-1529, 2009. Shen XZ, Lu Q, Deng L, Yu S, Zhang H, Deng Q, Jiang M, Hu Y, Yao KH, Yang YH. Resistance of Haemophilus influenzae isolates in children under 5 years old with acute respiratory infections in China between 2000 and 2002. J Int Med Res 35: 554-563, 2007. Skolimowski IM, Knight RC, Edward DI. Molecular basis of chloramphenicol and thiamphenicol toxicity to DNA in vitro. J Antimicrob Chemother 12: 535-542, 1983. Skoog DA, Holler FJ, Crouch SR. Molecular mass spectrometry. In: Principles of instrumental analysis. 5th edition. Thomson, Taiwan, 492-533, 2007. Suter CM, Schalit RJ, Culter RA. New Antibacterial Agents. II. An alternate synthesis of DL-threo-2-Dichloro-acetamido-1-(4-methylsulfonylphenyl)-1, 3-propanediol. J Am Chem Soc 75: 4330-4333, 1953. Switala M, Hrynyk R, Smutkiewic A, Jawprski K, Pawlowski P, Okoniwski P, Grabowski T, Debowy J. Pharmacokinetics of florfenicol, thiamphenicol, and chloramphenicol in turkeys. J Vet Pharmacol Therap 30: 145-150, 2007. Takatsuki K, Ushizawa I, Shoji T. Gas chromatographic-mass spectrometric determination of macrolide antibiotics in beef and pork using single ion monitoring. J Chromatogr A 391: 207-217, 1987. Tang CM, Huang QX, Yu YY, Peng XZ. Multiresidue determination of sulfonamides, macrolides, trimethoprim, and chloramphenicol in sewage sludge and sediment using ultrasonic extraction coupled with solid phase extraction and liquid chromatography-tandem mass spectrometry. Chin J Anal Chem 37: 1119-1124, 2009. U.S. FDA, Green Book(2008 June update). Unusan N. Occurrence of chloramphenicol, streptomycin and tetracycline residues in ultra-heat-treatment milk marketed in Turkey. Int J Food Sci Nutr 28: 1-6, 2009. Van Egmond HJ, Nouws JFM, van Lankveld-Driessen WDM, Streutjens-van Neer EPM, Simons FGH. Stabilty of antibiotics in meat during a simulated high temperature destruction process. Euroresidue IV 430-437, 2000. Vittorio F. Introductory address-salient features of thiamphenicol: review of clinical pharmacokinetics and toxicity. ASTDA 11 supplement: 336-339, 1984. Vue C, Schmidt LJ, Stehly GR, Gingerich WH. Liquid chromatographic de termination of florfenicol in plasma of multiple species of fish. J Chromatogr B Analyt Technol Biomed Life Sci 780: 111-117, 2002. Watson ADJ. Further observations on chloramphenicol toxicosis in cats. Am J Vet Res 41: 293-294, 1980. Wu J, Hu S, Cao L. Therapeutic effect of nisin Z on subclinical mastitis in lactating cows. Am Soc Microbio 51: 3131-3135, 2007. Wu JE, Chang C, Ding WP, He DP. Determination of florfenicol amine residues in animal edible tissues by an indirect competitive ELISA. J Agric Food Chem 56: 8261-8267, 2008. Yonava I. Studies on the thermal resistance of tetracycline and oxytetracycline residues in eggs and poultry meat. Vet Med Nauki 8: 75-82, 1971. Yunis AA. Chloramphenicol: relation of structure to activity and toxicity. Ann Rev Pharmacol Toxicol 28: 83-100, 1988. Zhang S, Liu Z, Guo X, Cheng L, Wang Z, Shen J. Simultaneous determination and confirmation of chloramphenicol,thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography–tandem mass spectrometry. J Chromatogr B 875: 399-404, 2008.
抗生素殘留在食品中不但會造成抗藥性菌的大量繁衍,甚至有些藥物或他們的代謝物對人體會造成毒性。氯黴素類抗生素(amphenicols)包括氯黴素(chloramphenicol, CAP)、氟甲磺氯黴素(florfenicol, FF)、甲磺氯黴素(thiamphenicol, TAP)皆屬於廣效性抗生素。氯黴素類抗生素對人體具有骨髓相關毒性,因此,目前在世界各地區產食動物使用上都有嚴格的限制。大部份有關氯黴素類抗生素之殘留報告都著重在生鮮的組織,甚少提供amphenicols之熱穩定性與烹煮對殘留藥物的影響。為保護消費者之權益,研究藥物在食品中經過加熱後之降解狀況是必要的。本實驗利用氣相層析質譜法(gas chromatography-mass spectrometry, GC/MS)之高專一性與高敏感度來評估殘留在雞肉或水中之氯黴素類抗生素之熱穩定性,並鑑定這些藥物之熱降解產物結構。藥物經由乙酸乙酯萃取後,接著以C18固相萃取並衍生化後進行GC/MS分析,得到CAP、FF與TAP之最低偵測極限分別為25、25與50 ppb,回收率介於38~144 %。CAP、FF與TAP溶於水中經過100 ℃水煮30分鐘後,降解率皆在30 %以下,但在雞肉中分別為70 %、 60 %與54 %。此結果指出蛋白質基質之存在確實會增加藥物之降解。在此同時,也發現TAP為FF之熱降解產物之一。本實驗證明了氯黴素類抗生素在水中為熱穩定物質但在雞肉中則較不穩定。氯黴素類抗生素加熱後的確會產生具有抑菌活性的物質,即使是在蛋白質基質存在時,經過100 ℃加熱處理30分鐘也不能完全降解這些藥物。

Antibiotic residues in food can lead to problems associated with toxicity and the spread of drug-resistant microorganisms. Amphenicols, namely chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FF) are broad-spectrum antibiotics used in veterinary medicine. Most information about amphenicols residue in food is related to concentration in raw tissue. However, heat stability of amphenicols and the effect of cooking on these drug residues in food are not clear. A gas chromatography-mass spectrometry (GC/MS) with electron impact (EI) ion source and quadrupole detection method was developed for identification of thermodegradation of amphenicols in water and chicken meat. Drugs were extracted with ethyl acetate and solid phase extraction using C18 cartridge. The detection limits of CAP, FF, and TAP were 25, 25, and 50 ppb, respectively. Recoveries of drug from chicken ranged from 38 to 144 %. Degradation of CAP, FF, and TAP were under 30 % after 30-min heating at 100 ℃ in water but were as high as 70 %, 60 %, and 54 % in chicken suggesting differential degradation of amphenicols between meat and water matrices. Results also indicated that TAP was one of degradation products obtained after heating of FF in water. In conclusion, amphenicols at low concentration are stable to heat in water but unstable in protein matrices. Heating of amphenicols may generate antimicrobial compounds and 30 min boiling treatment can not completely degrade the drugs in protein matrices.
其他識別: U0005-1608201020180100
Appears in Collections:獸醫學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.