Please use this identifier to cite or link to this item:
標題: 溶氧量、溫度與酸鹼值對大白鼠胰臟分泌胰島素之影響
The studies of Dissolved Oxygen, pH and Temperature on Insulin Secretion in Perfused Rat Pancreas
作者: 葉俊宏
Yeh, Jiun-Hung
關鍵字: dissolved oxygen;溶氧量;pH;temperature;insulin;溫度;酸鹼值;胰島素
出版社: 獸醫學系暨研究所
引用: Widmaier EP, Raff H, Stramg KT. Vander, Sherman, Luciano's Human physiology: the mechanisms of body function, nineth edition. Published by McGraw-Hill, 2004. Alberti K, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a who consultation. Diabetic Medicine 15: 539-553, 1998. Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E. Priming of insulin granules for exocytosis by granular Cl- uptake and acidification. Journal of Cell Science 114: 2145-2154, 2001. Benedetti S, Lamorgese A, Piersantelli M, Pagliarani S, Benvenuti F, Canestrari F. Oxidative stress and antioxidant status in patients undergoing prolonged exposure to hyberbaric oxygen. Clinical Biochemisry 37: 312-317, 2004. Boden G. Effect of free fatty acids on gluconeogenesis and glycogenolysis. Life Sciences 72: 977-988, 2003. Boden G, Chen X, Iqbal N. Acute lowering of plasm fatty acids lowers basal insulin secretion in diabetic and nondiabetic subjects. Diabetes 47: 1609-1612, 1998. Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J, Schermerhorn T, Straub SG, Yajima H, Sharp GWG. Diabetes 51: S83-S90, 2002. Brenner MB, Mest HJ. Abuffer temperature controlled perifusion system to study temperature dependence and kinetics of insulin secretion in MIN6 pseudoislets. Journal of Pharmacological and Toxicological Methods 50: 53-57, 2004. Brownlee M. Biochemistry and molecular cell biology of diabetic coplications. Nature 414: 813-820, 2001. Buchwald P. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theoretical Biology and Medical Modelling 6, 2009. Butler AE, Janson J, Bonner WS, Ritzel R, Rizza RA, Bulter PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52: 102-110,2003. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology & Medicine 29: 222-230, 2000. Connolly CC, Ivy RE, Adkins-Marshall BA, Dobbins RL, Neal DW, Williams PE, Cherrington AD. Counterregulation by epinephrine and glucagon during insulin-induced hypoglycemia in the conscious dog. Diabetes Research and Clinical Practice 31: 45-56, 1996. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83: 572-584, 1968. Deleers M, Levrun P, Malaisse W. Increase in CO3H- influx and cellular pH in glucose-stimulated pancreatic islet. Federation of European Biochemical Societies 154: 97-100, 1983. Deleers M, Levrun P, Malaisse W. Nutrient-induced changes in the pH of pancreatic islet cells. Hormone and metabolic research 17: 391-395, 1985. Doliba NM, Wehrli Sl, Vatamaniuk MZ, Qin W, Buettger CW, Collins HW, Matschinsky FM. Metabolic and ionic coupling factors in amino acid-stimulated insulin release in pancreatic β-HC9 cells. American Journal of Physiology Endocrinology and Metabolism 292: E1507-E1519, 2007. Dominici FP, Argentino DP, Munoz MC, Miquet JG, Sotelo AI, Turyn D. Infulence of rhe crosstalk between growth hormone and insulin signaling on the modulation of insulin sensitivity. Growth Hormone & IGF Research 15: 324-336, 2005. Evans JL, Goldfine IRAD, Maddux BA, Grodsky GM.Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews 23: 599-622, 2002. Fox JEM, Karaman G, Wheeler MB. Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in β-cells. Biochemical and Biophysical Research Communications 350: 492-497, 2006. Ganong WF. Endocrine functions of the pancreas & regulation of carbohydrate metabolism. In Riew of medical physiology. 18th ed., W.F. Ganong (ed.), Appleton & Lange, Stamford, Connecticut, USA, pp. 324-326, 1997. Grill V, Adamson U, Cerasi E. Immediate and time-dependent effects of glucose on insulin release from rat pancreatic tissue. The Journal of Clinical Investigation 64: 1034-1043, 1978. Gunawardana SC, Rocheleau JV, Head WS, Piston DW. Nutrient-stimulated insulin secretion in mouse islets is critically dependent in intracellular pH. BMC Endocrine Disorders, 2004. Gunawardana SC, Sharp GWG. Intracellular pH plays a critical role in glucose-induced time-dependent potentiation of insulin release in rat islets. Diabetes 51: 105-113, 2002. Hequin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49: 1751-1760, 2000. Hequin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC. Signals and pools underlying biphasic insulin secretion. Diabetes 51: S60-S67, 2002 Hequin JC, Ravier MA, Jonas NJC, Gilon P. Hierarchy of the β-cell signals controllong insulin secretion. European Journal of Clinical Investigation 33: 742-750, 2003. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix Roland, Riess H. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 43: 33-56, 2002. Juntti-Berggren L, Arkhammar P, Nilsson T, Rorsman P, Berggren PO. Glucose-induced increase in cytoplasmic pH in pancreaticβ-cells is mediated by Na+/H+ exchange, an effect not dependent on protein kinase C. The Journal of Biological Chemistry 266: 23537-23541, 1991. Juntti-Berggren L, Civelek VN, Berggren PO, Schultz V, Corkey BE, Tornheim K. Glucose-stimulated increase in cytoplasmic pH precedes increase in free Ca2+ in pancreatic β-cells. The Journal of Biological Chemistry 269: 14391-14395, 1994. Juntti-Berggren L, Rorsman P, Siffer W, Berggren PO. Intracellular pH and stimulus- secretion coupling in insulin-producing RINm5F cells. The Biochemical journal 287, 59-66, 1992. Kalapos MP. On the mammalian acetone metabolism: from chemistry to clinical implications. Biochimica et Biophysica Acta 1621: 122-139, 2003. Khatib OMN. Guidelines for the prevention, management and care of diabetes mellitus. World Health Organization, EMRO Technical Publications Series 32: 1-82, 2006. Kim JY, Nolte LA, Hansen PA, Han DH, Thompson PA, Holloszy JO. High-fat diet-induced muscle insulin resistance: relationship to visceral fat mass. American journal of physiology: Regulatory, integrative and comparative physiology 279: 2057-2065, 2000. Kinard TA, Satin LS. Temperature modulates the Ca2+ current of HIT-T15 and mouse pancreatic β-cells. Cell Calcium 20: 4758-462, 1996 Komatsu M, Schermerhorn T, Aizawa T, Sharp GWG.. Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America 92: 10728-10732, 1995. Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Experimental Diabetes Research 2007: 43603, 2007. Lindstrom P, Sehlin J. Effect of glucose in the intracellular pH of pancreatic islet cells. The Biochemical journal 218: 887-892, 1984. Lynch AM, Meats JE, Best L, Tomlinson S. Effect of nutrient and non-nutrient stimuli on cytosolic pH in cultured in sulinoma (HIT-T15) cells. Biochimica et Biophysica Acta 1012: 166-170, 1989. Matsunami T, Sato Y, Morishima T, Mano Y, Yukawa M. Enhancement of glucose toxicity by hyperbaric oxygen exposure in diabetic rats. The Tohoku Journal of Experimental Medicine 216: 127-132, 2008. McCarty MF. Acid-base balance may influence risk for insulin resistance syndrome by modulating cortisol output. Medical Hypotheses 64: 380-384, 2005. Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Annals of the New York Academy of Sciences 908: 219-225, 2000. Muller G, Jordan H, Jung C, Kleine H, Petry S. Analysis of lipolysis in adipocytes using a fluorescent fatty acid derivative. Biochimie 85: 1245-1256, 2003. Nesher R, Anteby E, Yedovizky M, Warwar N, Nurit K, Cerasi E. β-cell protein kinases and dynamics of the insulin response to glucose. Diabetes 51: S68-S73, 2002. Nystrom FH, Quon MJ. Insulin signalling: Metabolic pathways and mechanisms for specifity. Cellular signaling 11: 563-574, 1999. Ohta M, Nelson D, Nelson J, Meglasson MD, Erecinska M. Oxygen and temperature dependence of stimulated insulin secretion in isolated rat islets of Langerhans. The Journal of Biological Chemistry 265: 17525-17532, 1990. Oury TD, Schaefer LM, Fattman CL, Choi A, Weck KE, Watkins SC. Depletion of pulmonary EC-SOD after exposure to hyperoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology 283: 777-784,2002. Pessin JE and Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. Journal of Clinical Investigation 106: 165-169, 2000. Robertson RP, Harmon J, Tran POT, Poitout V. β-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53: S119-S124, 2004. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M, Araki E. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochemical and Biophysical Research Communications 300: 216-222, 2003. Sanchez-Alavez M, Tabarean IV, Osborn O, Mitsukawa K, Schaefer J, Dubins J, Holmberg KH, Klein I, Klaus J, Gomez LF, Kolb H, Secrest J, Jochems J, MyasHiro K, Buckley P, Hadcock JR, Eberwine J, Conti B, Bartfai T. Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. Diabetes 59: 43-50, 2010. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 2009. Shibasaki T, Sunaga Y, Seino S. Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis. Diabetes 53: S59-S62, 2004. Shepherd RM, Henquin JC. The role of metabolism, cytoplasmic Ca2+, and pH- regulating exchangers in glucose-induced rise of cytoplasmic pH in normal mouse pancreatic islets. The Journal of Biological Chemistry 270: 7915-7921, 1995 Shulman GI. Cellular mechanism of insulin resistance. Journal of Clinical Investigation 106: 171-176, 2000. Speit G, Dennog G, Radermacher P, Rothfuss A. Genotoxicity of hyberbaric oxygen. Mutation Research 512: 111-119, 2002. Stiernet P, Guiot Y, Gilon P, Henquin JC. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. The Journal of Biological Chemistry 281: 22412-22151, 2006. Stiernet P, Nwnquin M, Moulin P, Jonas JC, Henquin JC. Glucose-induced cytosolic pH changes in β-cells and insulin secretion are not causally related. The Journal of Biological Chemistry 282: 24538-24546, 2007. Straub SG, Sharp GW. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metabolism Research and Reviews 18: 451-463, 2002. Trautamn ME, Wollheim CB. Characterization of glucose transport in an insulin-secreting cell line. The Biochemical journal 242: 625-630, 1987. Walker M. Obesity, insulin resistance, and its link to non-insulin-dependent diabetes mellitus. Metabolism 44: 18-20, 1995. Xu H, Cui N, Yang Z, Wu J, Giwa LR, Abdulkadir L, Sharma P, Jiang C. Direct activation of cloned KATP channels by intracellular acidosis. The Journal of Biological Chemistry 276: 12898-12902, 2001. Xu H, Wu J, Cui N, Abdulkadir L, Wang R, Mao J, Giwa LR, Chanchevalap S, Jiang C. Distinct histidine residues control the acid-induced activation and inhibition of the cloned KATP channel. The Journal of Biological Chemistry 276: 38690-38696, 2001. Zawalich WS, Zawalich KC, Yamazaki H. Divergent effects of epinephrine and prostaglandin E2 on glucose-insuced insulin secretion perifused rat islets. Metabolism Clinical and Experimental 56: 12-18, 2007.
依Ganong(1997)之分類,影響胰島素分泌的因子有葡萄糖、蛋白質、脂肪衍生物、Cyclic AMP、自主神經作用、腸道荷爾蒙、口服降血糖藥物、鉀離子耗盡、與β細胞之反應等因素。本實驗以活體灌流大白鼠胰臟模式來探討溶氧量(dissolved oxygen; DO)、酸鹼值(pH)與溫度對胰島素分泌之影響,實驗分三組,每組改變一個變因,依次為溶氧量、酸鹼值與溫度的變化,其它則維持溶氧量於100%、pH7.4、溫度37℃;結果發現灌流液的溶氧量越高(60-70-80-90-100-110%),胰島素分泌也相對增加(5.5與10 mM glucose),溶氧量減少(110-100-90-80-70-60%),顯示高溶氧量能加強10 mM葡萄糖刺激分泌更多胰島素,胰島素分泌也減少(5.5 mM glucose),但在高糖(10 mM葡萄)的刺激下,仍能促進胰島素分泌,表示胰島素受葡萄糖的刺激作用大過於溶氧量之影響;酸鹼值越高(pH7.4-7.6-7.8-8.0)則抑制胰島素之分泌,酸鹼值降低(7.4-7.2-7.0-6.8)則增加分泌,加上文獻的結果,能推知酸性環境有利於營養物(如葡萄糖)刺激胰島素分泌;溫度由37℃升高至40℃則減少胰島素分泌,溫度由40℃降低至37℃則逐漸恢復分泌,但未完全恢復至實驗前37℃的正常值,顯示環境溫度過高產生抑制胰島素分泌之效應。

By Ganong (1997) classification, factors affecting insulin secretion are glucose, protein, fat derivatives, Cyclic AMP, autonomic nervous system function, intestinal hormones, oral hypoglycemic agents, potassium depletion, and β cell response Etc. In this experiment, perfused rat pancreas in vivo model of dissolved oxygen (DO), pH value and temperature effects on insulin secretion, were divided into three groups each group change a variable, followed by dissolved oxygen, pH and temperature changes, others are maintained dissolved oxygen at 100%, pH 7.4, temperature 37℃.
The results showed that increase the dissolved oxygen (60-70-80-90-100-110%), insulin secretion is relatively increased (5.5 and 10 mM glucose), indicating high dissolved oxygen can enhance 10 mM glucose secreted more insulin. Decrease the dissolved oxygen (110-100-90-80-70-60%), insulin secretion decreased (5.5 mM glucose), but in high glucose (10 mM glucose) was able to stimulate insulin secretion, indicating insulin stimulated by glucose greater than the effect of dissolved oxygen. Increase the pH value (pH 7.4-7.6-7.8-8.0) were inhibited insulin secretion, pH decreased (pH 7.4-7.2-7.0-6.8) increased secretion, coupled with results in the literature, would predict that the acidic environment conducive to nutrient (eg glucose) stimulation of insulin secretion. Temperature increase from 37 ℃ to 40 ℃ decreased insulin secretion, reduce the temperature from 40 ℃ to 37 ℃ was gradually restored secretion, indicating the ambient temperature too high will inhibit the insulin secretion.
其他識別: U0005-1907201010283100
Appears in Collections:獸醫學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.