Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14302
標題: 一氧化氮氣體感測器應用於選擇性偵測亞硝酸鹽之研究
The application and development of a gaseous nitric oxide sensor for highly selective nitrite detection
作者: 徐亞力
Hsu, Ya-Li
關鍵字: 網版印刷超微碳電極;screen-printed edge band carbon ultramicroelectrode;一氧化氮;亞硝酸鹽;nitric oxide;nitrite
出版社: 化學系所
引用: [1] Z. Ogumi, T. kuroe, Z. I. Takehara, J. Electrochem. Soc., 1985, 132, 2601. [2]斐里德.穆拉德,陳振興,神奇的一氧化氮。 [3] K. J. Haung, N. Zhang, W. Z. Xie, H. S. Zhang, Y. Q. Feng, H. Wang, Anal. Bioanal. Chem., 2007, 388, 939. [4] C. Bogdan, Nat. Immunol., 2001, 2, 907. [5] K. Ichimori, H. Ishida, M. Fukahori, H. Nakazawa, E. Murakami, Rev. Sci. Instrum., 1994, 65, 2714. [6] T. Malinski, Z. Taha, Nature, 1992, 358, 676. [7] E. Casero, F. Pariente, E. Lorenzo, L. Beyer, J. Losada, Electroanalysis, 2001, 13, 1411. [8] F. Bedioui, S. Trevin, J. Devynck, J. Electroanal. Chem., 1994, 377, 295. [9] E. Leung, P. J. Cragg, D. O’Hare, M. O’Shea, Chem. Commun., 1996, 23. [10] K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, 3, 290. [11] J. Sun, P. C. Hauser, V. Zhelyaskov, J. Lin, M. Broderick, H. Fein, X. Zhang, Electroanalysis, 2004, 16, 20. [12] 陳威成(民100)。奈米白金修飾超微碳電極於電化學氣體感測器之研發與應用。國立中興大學化學系碩士論文 [13] K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, 3, 290. [14] O. V. Cleemput, A. H. Samater., Fert. Res., 1996, 45, 81. [15] D. N. Maynard, A. Barker, A. V. Mimotti., N. H. Peck., Adv. Agron., 1976, 28, 71. [16] P. Santamaria, J. Sci. Food. Agric., 2006, 86, 10. [17] D. Demeyer., K. Honikel., S. D.Smet., Meat Sci., 2008, 80, 953. [18] P. Jakszyn, C. A. Gonzalez, World J. Gastroenterol., 2006, 12, 4296. [19] M. Reinin, T. Tamme, M. Roasto, K. Juhkam, S. Jurtsenko, T. Tenno., A. Kiss, Food. Addit. Contam., 2005, 22, 1098. [20] M. J. Moorcroft, J. Davis, R. G. Compton, Talanta, 2001, 54, 785 [21] L. A. Ridnour, J. E. Sim, M. A. Hayward, D. A. Wink,S. M. Martin, G. R. Buettner, D. R. Spitz, Anal. Biochem., 2000, 281, 223. [22] H. Chen, Y. Fang, T. An, K. Zhu, J. Lu, Int. J. Environ.Anal. Chem., 2000, 76, 89. [23] M. N. Abbas, G. A. Mostafa, Anal. Chim. Acta, 2000, 410, 185. [24] F. Yang, E. Troncy, M. Francoeur, B. Vinet, P. Vinay,G. Czaika, G. Blaise, Clin. Chem., 1997, 43, 657. [25] Z. K. He, B. Fuhrmann, U. Spohn, Fres. J. Anal. Chem., 2000, 367, 264. [26] M. I. H. Helaleh, T. Korenaga, Microchem. J., 2000, 64, 241. [27] H. Li, C. J. Meininger, G. Y. Wu, J. Chromatogr. B., 2000, 746, 199. [28] R. T. Masserini, K. A. Fanning, Mar. Chem., 2000, 68, 323. [29] J. P. Greiss, Ber. Dtsch. Chem. Ges., 1879, 12, 426. [30]行政院衛生署「食品中亞硝酸鹽之檢驗方法」 [31] D. Tsikas, F. M. Gutzki, J. C. Fro‥lich, Fres. J. Anal. Chem., 1992, 342, 95. [32] D. Tsikas, S. Rossa, J. Sandmann, J. C. Fro‥lich, J.Chromatogr. B., 1999, 724, 199. [33] S. A. Everett, M. F. Dennis, G. M. Tozer, V. E. Prise, P. Wardman, M. R. L. Stratford, J. Chromatogr. A., 1995, 706, 437. [34] S. H. Lee, L. R. Field, Anal. Chem., 1984, 56, 2647. [35] A. Tanaka, N. Nose, H. Iwasaki, J. Chromatogr., 1982, 235, 173. [36] V. Rizzo, L. Montalbetti, A. L. Rozza, W. Bolzani, C. Porta, G. Balduzzi, E. Scoglio, R. Moratti, J. Chromatogr. A., 1998, 798, 103. [37] M. Lookabaugh, I. S. Krull, J. Chromatogr., 1988, 452, 295. [38] M. I. H. Helaleh, T. Korenaga, J. Chromatogr. B, 2000, 744, 433. [39] D. Tsikas, I. Fuchs, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1998, 715, 441. [40] D. Tsikas, R. H. Bo‥ger, S. M. Bode-Bo‥ger, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1994, 661, 185. [41] J. P. Landers, Clin. Chem., 1995, 41, 495. [42] P. N. Bories, E. Scherman, L. Dziedzic, Clin. Biochem., 1999, 32, 9. [43] M. Duca, V. Kavvadia, P. Rodriguez, S. C. S. Lai, T. Hoogenboom, M. T. M. Koper, J. Electroanal. Chem., 2010, 649, 59. [44] D. Pletcher, M. Bertotti, j. Braz. Chem. Soc., 1997, 8, 391. [45] G. Zhao, K. Liu, S. Lin., G. Liang, X. Guo, Z. Zhang., Microchemical Acta., 2003, 144, 75. [46] B. Strehlitz, B. Grunsig, W. Schumacher, B. M. H. Kroneck., K. D. Vorlop, H. Kott, Anal. Chem., 1996, 68, 807. [47] Z. H. Dai, X. X. Xu, H. X. Ju, Anal. Bio., 2004, 332, 23. [48] X. Huang, Y. Li, Y. Chen, L. Wang, Sens. Acuators B., 2008, 134, 780. [49] S. Wang, Y. Yin, X. Lin, Electrochem. Commun., 2004, 6, 259. [50] S. Rajesh, A. K. Kanugula, K. Bhargava, G. Ilavazhagan, S. Kotamraju, C. Karunakaran, Biosens. Bioelectron., 2010, 26, 689. [51] Z. Yuan, H. Xian, F. Li, S. Wu, Q. Lu, Y. Li, L. Wang, Electrochim. Acta., 2010, 55, 5905. [52] H. Wang, X. Bo, J. Nai., L. Wang, L. Guo, J. Electroanal. Chem., 2011, 662, 281. [53] B. Unnikrishnan, P. L. Ru, S. M. Chen, V. Mani, Sens. Acuators B., 2013, 177, 887. [54] W. Y. Ko, W. H. Chen, C. Y. Cheng, K. J. Lin, Sens. Actuators B., 2009, 137, 437. [55] P. Wang, F. Li, X. Huang, Y. Li, L. Wang, Electrochem. Commun., 2008, 10, 195. [56] K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Electrochem. Commun., 2007, 9, 65. [57] N. Zhu, Q. Xu, S. Li, H. Gao, Electrochem. Commun., 2009, 11, 2308. [58] R. Walker, Food. Addit .Contam. 1999, 7, 717. [59] K. O. Honikel, Meat Sci. 2008, 78, 68. [60] O. V. Cleemput, A. H. Samater., Fert. Res., 1996, 45, 81. [61] D. N. Maynard, A. Barker, A. V. Minotti., N. H. Peck., Adv. Agron., 1976, 28, 71. [62] J. B. Fox, Anal. Chem., 1979, 51, 1493. [63] J. C. Chung, S. S. Chou, D. F. Hwang, Food Addit. Contam., 2004, 21, 317. [64] X. Niu, M. Lan, C. Chen, H. Zhao, Talanta, 2012, 99, 1062.
摘要: 
本研究以網版印刷超微碳電極作為工作平台,以簡單快速之電化學還原法修飾奈米鉑,再塗佈上NafionR作為導電固態電解質,成功發展出電化學式一氧化氮氣體感測器;並藉由亞硝酸鹽於酸性溶液中釋出一氧化氮之反應,於氣相中量測一氧化氮產出量用以間接定量溶液中亞硝酸鹽之濃度;而在修飾奈米鈀鉑雙金屬之研究中,則成功提升偵測一氧化氮之靈敏度。本氣體感測器之最大優點為利用液氣相分離之偵測系統,可於真實樣品中選擇性偵測亞硝酸鹽含量,並且不需添加任何衍生與沉澱試劑和複雜之前處理步驟。研究中以本實驗室開發之網版印刷超微碳電極作為工作電極,其邊緣擴散效應有助於以電化學還原法修飾均勻分散之奈米金屬於電極表面,可大幅提升修飾金屬之電催化性,除此之外,超微電極因電極面積小而背景電流值較低,能夠提高雜訊比,因此可應用在氣體感測器之研究與發展。利用修飾奈米鉑超微電極製備之一氧化氮氣體感測器,以安培法間接定量亞硝酸鹽可達5個等級之寬廣線性範圍以及高靈敏度,且偵測重複性佳。而在香腸和蔬菜等真實樣品中檢測亞硝酸鹽含量之實驗結果也與分光光度法量測結果符合,並具有良好之回收率,證實本氣體感測器在實際應用層面上有相當大的發展潛力。

We have developed an amperometric NO gas sensor based on a screen-printed edge band carbon ultramicroelectrode (designated as SPUME) deposited with Pt nanoparticles and coated with Nafion as solid polymer electrolyte. The concentration of nitrite is determined indirectly by measuring the amount of NO generated from the reaction of nitrite and sulfuric acid. Under optimized conditions, the calibration curve was linear in the range of 0.2 μM – 10 mM and the detection limit (S/N = 3) was calculated as 3.7 nM. The major advantage of detection in gas phase is to avoid the interference of easily oxidized molecules. In real sample analysis, an almost 100% recovery values was achieved for the detection of nitrite in cured meat and vegetable. Compared to official spectrophotometric method, the sample preparation is much simpler and avoids the use of toxic reagent. The proposed method is promising for in-situ analysis due to simple pre-treatment procedure. Furthermore, We also presented a facile way to fabricate bimetallic nano–PtPd material on SPUME, which exhibits a highly electrocatalytic performance for redox of NO.
URI: http://hdl.handle.net/11455/14302
其他識別: U0005-1807201319183300
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.