Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14302
DC FieldValueLanguage
dc.contributor曾志明zh_TW
dc.contributorJyh-Myng Zenen_US
dc.contributor.author徐亞力zh_TW
dc.contributor.authorHsu, Ya-Lien_US
dc.contributor.other化學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:52:04Z-
dc.date.available2014-06-06T06:52:04Z-
dc.identifierU0005-1807201319183300en_US
dc.identifier.citation[1] Z. Ogumi, T. kuroe, Z. I. Takehara, J. Electrochem. Soc., 1985, 132, 2601. [2]斐里德.穆拉德,陳振興,神奇的一氧化氮。 [3] K. J. Haung, N. Zhang, W. Z. Xie, H. S. Zhang, Y. Q. Feng, H. Wang, Anal. Bioanal. Chem., 2007, 388, 939. [4] C. Bogdan, Nat. Immunol., 2001, 2, 907. [5] K. Ichimori, H. Ishida, M. Fukahori, H. Nakazawa, E. Murakami, Rev. Sci. Instrum., 1994, 65, 2714. [6] T. Malinski, Z. Taha, Nature, 1992, 358, 676. [7] E. Casero, F. Pariente, E. Lorenzo, L. Beyer, J. Losada, Electroanalysis, 2001, 13, 1411. [8] F. Bedioui, S. Trevin, J. Devynck, J. Electroanal. Chem., 1994, 377, 295. [9] E. Leung, P. J. Cragg, D. O’Hare, M. O’Shea, Chem. Commun., 1996, 23. [10] K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, 3, 290. [11] J. Sun, P. C. Hauser, V. Zhelyaskov, J. Lin, M. Broderick, H. Fein, X. Zhang, Electroanalysis, 2004, 16, 20. [12] 陳威成(民100)。奈米白金修飾超微碳電極於電化學氣體感測器之研發與應用。國立中興大學化學系碩士論文 [13] K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003, 3, 290. [14] O. V. Cleemput, A. H. Samater., Fert. Res., 1996, 45, 81. [15] D. N. Maynard, A. Barker, A. V. Mimotti., N. H. Peck., Adv. Agron., 1976, 28, 71. [16] P. Santamaria, J. Sci. Food. Agric., 2006, 86, 10. [17] D. Demeyer., K. Honikel., S. D.Smet., Meat Sci., 2008, 80, 953. [18] P. Jakszyn, C. A. Gonzalez, World J. Gastroenterol., 2006, 12, 4296. [19] M. Reinin, T. Tamme, M. Roasto, K. Juhkam, S. Jurtsenko, T. Tenno., A. Kiss, Food. Addit. Contam., 2005, 22, 1098. [20] M. J. Moorcroft, J. Davis, R. G. Compton, Talanta, 2001, 54, 785 [21] L. A. Ridnour, J. E. Sim, M. A. Hayward, D. A. Wink,S. M. Martin, G. R. Buettner, D. R. Spitz, Anal. Biochem., 2000, 281, 223. [22] H. Chen, Y. Fang, T. An, K. Zhu, J. Lu, Int. J. Environ.Anal. Chem., 2000, 76, 89. [23] M. N. Abbas, G. A. Mostafa, Anal. Chim. Acta, 2000, 410, 185. [24] F. Yang, E. Troncy, M. Francoeur, B. Vinet, P. Vinay,G. Czaika, G. Blaise, Clin. Chem., 1997, 43, 657. [25] Z. K. He, B. Fuhrmann, U. Spohn, Fres. J. Anal. Chem., 2000, 367, 264. [26] M. I. H. Helaleh, T. Korenaga, Microchem. J., 2000, 64, 241. [27] H. Li, C. J. Meininger, G. Y. Wu, J. Chromatogr. B., 2000, 746, 199. [28] R. T. Masserini, K. A. Fanning, Mar. Chem., 2000, 68, 323. [29] J. P. Greiss, Ber. Dtsch. Chem. Ges., 1879, 12, 426. [30]行政院衛生署「食品中亞硝酸鹽之檢驗方法」 [31] D. Tsikas, F. M. Gutzki, J. C. Fro‥lich, Fres. J. Anal. Chem., 1992, 342, 95. [32] D. Tsikas, S. Rossa, J. Sandmann, J. C. Fro‥lich, J.Chromatogr. B., 1999, 724, 199. [33] S. A. Everett, M. F. Dennis, G. M. Tozer, V. E. Prise, P. Wardman, M. R. L. Stratford, J. Chromatogr. A., 1995, 706, 437. [34] S. H. Lee, L. R. Field, Anal. Chem., 1984, 56, 2647. [35] A. Tanaka, N. Nose, H. Iwasaki, J. Chromatogr., 1982, 235, 173. [36] V. Rizzo, L. Montalbetti, A. L. Rozza, W. Bolzani, C. Porta, G. Balduzzi, E. Scoglio, R. Moratti, J. Chromatogr. A., 1998, 798, 103. [37] M. Lookabaugh, I. S. Krull, J. Chromatogr., 1988, 452, 295. [38] M. I. H. Helaleh, T. Korenaga, J. Chromatogr. B, 2000, 744, 433. [39] D. Tsikas, I. Fuchs, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1998, 715, 441. [40] D. Tsikas, R. H. Bo‥ger, S. M. Bode-Bo‥ger, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1994, 661, 185. [41] J. P. Landers, Clin. Chem., 1995, 41, 495. [42] P. N. Bories, E. Scherman, L. Dziedzic, Clin. Biochem., 1999, 32, 9. [43] M. Duca, V. Kavvadia, P. Rodriguez, S. C. S. Lai, T. Hoogenboom, M. T. M. Koper, J. Electroanal. Chem., 2010, 649, 59. [44] D. Pletcher, M. Bertotti, j. Braz. Chem. Soc., 1997, 8, 391. [45] G. Zhao, K. Liu, S. Lin., G. Liang, X. Guo, Z. Zhang., Microchemical Acta., 2003, 144, 75. [46] B. Strehlitz, B. Grunsig, W. Schumacher, B. M. H. Kroneck., K. D. Vorlop, H. Kott, Anal. Chem., 1996, 68, 807. [47] Z. H. Dai, X. X. Xu, H. X. Ju, Anal. Bio., 2004, 332, 23. [48] X. Huang, Y. Li, Y. Chen, L. Wang, Sens. Acuators B., 2008, 134, 780. [49] S. Wang, Y. Yin, X. Lin, Electrochem. Commun., 2004, 6, 259. [50] S. Rajesh, A. K. Kanugula, K. Bhargava, G. Ilavazhagan, S. Kotamraju, C. Karunakaran, Biosens. Bioelectron., 2010, 26, 689. [51] Z. Yuan, H. Xian, F. Li, S. Wu, Q. Lu, Y. Li, L. Wang, Electrochim. Acta., 2010, 55, 5905. [52] H. Wang, X. Bo, J. Nai., L. Wang, L. Guo, J. Electroanal. Chem., 2011, 662, 281. [53] B. Unnikrishnan, P. L. Ru, S. M. Chen, V. Mani, Sens. Acuators B., 2013, 177, 887. [54] W. Y. Ko, W. H. Chen, C. Y. Cheng, K. J. Lin, Sens. Actuators B., 2009, 137, 437. [55] P. Wang, F. Li, X. Huang, Y. Li, L. Wang, Electrochem. Commun., 2008, 10, 195. [56] K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Electrochem. Commun., 2007, 9, 65. [57] N. Zhu, Q. Xu, S. Li, H. Gao, Electrochem. Commun., 2009, 11, 2308. [58] R. Walker, Food. Addit .Contam. 1999, 7, 717. [59] K. O. Honikel, Meat Sci. 2008, 78, 68. [60] O. V. Cleemput, A. H. Samater., Fert. Res., 1996, 45, 81. [61] D. N. Maynard, A. Barker, A. V. Minotti., N. H. Peck., Adv. Agron., 1976, 28, 71. [62] J. B. Fox, Anal. Chem., 1979, 51, 1493. [63] J. C. Chung, S. S. Chou, D. F. Hwang, Food Addit. Contam., 2004, 21, 317. [64] X. Niu, M. Lan, C. Chen, H. Zhao, Talanta, 2012, 99, 1062.en_US
dc.identifier.urihttp://hdl.handle.net/11455/14302-
dc.description.abstract本研究以網版印刷超微碳電極作為工作平台,以簡單快速之電化學還原法修飾奈米鉑,再塗佈上NafionR作為導電固態電解質,成功發展出電化學式一氧化氮氣體感測器;並藉由亞硝酸鹽於酸性溶液中釋出一氧化氮之反應,於氣相中量測一氧化氮產出量用以間接定量溶液中亞硝酸鹽之濃度;而在修飾奈米鈀鉑雙金屬之研究中,則成功提升偵測一氧化氮之靈敏度。本氣體感測器之最大優點為利用液氣相分離之偵測系統,可於真實樣品中選擇性偵測亞硝酸鹽含量,並且不需添加任何衍生與沉澱試劑和複雜之前處理步驟。研究中以本實驗室開發之網版印刷超微碳電極作為工作電極,其邊緣擴散效應有助於以電化學還原法修飾均勻分散之奈米金屬於電極表面,可大幅提升修飾金屬之電催化性,除此之外,超微電極因電極面積小而背景電流值較低,能夠提高雜訊比,因此可應用在氣體感測器之研究與發展。利用修飾奈米鉑超微電極製備之一氧化氮氣體感測器,以安培法間接定量亞硝酸鹽可達5個等級之寬廣線性範圍以及高靈敏度,且偵測重複性佳。而在香腸和蔬菜等真實樣品中檢測亞硝酸鹽含量之實驗結果也與分光光度法量測結果符合,並具有良好之回收率,證實本氣體感測器在實際應用層面上有相當大的發展潛力。zh_TW
dc.description.abstractWe have developed an amperometric NO gas sensor based on a screen-printed edge band carbon ultramicroelectrode (designated as SPUME) deposited with Pt nanoparticles and coated with Nafion as solid polymer electrolyte. The concentration of nitrite is determined indirectly by measuring the amount of NO generated from the reaction of nitrite and sulfuric acid. Under optimized conditions, the calibration curve was linear in the range of 0.2 μM – 10 mM and the detection limit (S/N = 3) was calculated as 3.7 nM. The major advantage of detection in gas phase is to avoid the interference of easily oxidized molecules. In real sample analysis, an almost 100% recovery values was achieved for the detection of nitrite in cured meat and vegetable. Compared to official spectrophotometric method, the sample preparation is much simpler and avoids the use of toxic reagent. The proposed method is promising for in-situ analysis due to simple pre-treatment procedure. Furthermore, We also presented a facile way to fabricate bimetallic nano–PtPd material on SPUME, which exhibits a highly electrocatalytic performance for redox of NO.en_US
dc.description.tableofcontents論文摘要 i Abstract ii 目錄 iii 表目次 vii 圖目次 viii 一、 緒論 1 (一) 網版印刷超微碳電極 1 (二) 固態高分子電解質NafionR 4 (三) 電化學方法簡介 6 1. 循環伏安法(Cyclic voltammetry) 6 2. 安培法(Amperometry) 8 二、 實驗器材與藥品 9 (一) 儀器設備與實驗器材 9 (二) 藥品目錄 10 1. 一氧化氮氣體感測器之製備與研發 10 2. 一氧化氮氣體感測器應用於選擇性偵測亞硝酸鹽 10 3. 奈米鈀鉑雙金屬修飾超微電極之製備與應用 11 4. 未來展望 12 (三) 藥品配製 13 (四) 氣體感測器裝置 15 三、 一氧化氮氣體感測器之製備與研發 16 (一) 一氧化氮研究背景介紹 16 1. 一氧化氮之重要性 16 2. 文獻回顧 17 (二) 研究動機與目標 19 (三) 實驗內容與方法簡述 20 1. 奈米金屬製備方法 20 2. 電化學還原法 21 3. 網版印刷超微碳電極電鍍奈米鉑 23 4. 製備電位恆定之銀參考電極 25 5. 電鍍電位 27 (四) 結果與討論 33 1. 一氧化氮之電化學行為 33 2. 一氧化氮於電極表面之行為 35 3. 反應機構 37 4. 安培法偵測一氧化氮之最佳電位探討 39 5. 動相氣體流速探討 41 6. 一氧化氮偵測重複性 43 7. 校正曲線與偵測極限 45 (五) 結論 46 四、 一氧化氮氣體感測器應用於選擇性偵測亞硝酸鹽 47 (一) 亞硝酸鹽研究背景介紹 47 1. 亞硝酸鹽之重要性 47 2. 亞硝酸鹽分析方法 48 (二) 研究動機與目標 53 (三) 實驗內容與方法簡述 55 真實樣品之前處理步驟: 55 (四) 結果與討論 56 1. 偵測亞硝酸鹽之電化學行為 56 2. 安培法偵測亞硝酸鹽之最佳電位探討 57 3. 動相氣體流速探討 59 4. 不同酸液之影響和硫酸濃度探討 60 5. 校正曲線、偵測極限與重複性 63 6. 文獻比較 66 7. 真實樣品之偵測 68 (五) 結論 81 五、 奈米鈀鉑雙金屬修飾超微電極之製備與應用 82 (一) 研究背景 82 (二) 研究動機與目標 83 (三) 超微電極修飾奈米鈀鉑雙金屬 84 1. 修飾鈀和鉑之比較 84 2. 鈀鉑雙金屬之共沉積 86 3. 與網版印刷碳電極之比較 89 (四) 結果討論 91 1. 奈米鈀鉑超微電極之電化學行為 91 2. 最佳電鍍時間 92 3. 電鍍溶液鈀鉑濃度比例探討 95 (五) 結論 100 六、 未來展望 101 七、 參考文獻 103zh_TW
dc.language.isozh_TWen_US
dc.publisher化學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807201319183300en_US
dc.subject網版印刷超微碳電極zh_TW
dc.subjectscreen-printed edge band carbon ultramicroelectrodeen_US
dc.subject一氧化氮zh_TW
dc.subject亞硝酸鹽zh_TW
dc.subjectnitric oxideen_US
dc.subjectnitriteen_US
dc.title一氧化氮氣體感測器應用於選擇性偵測亞硝酸鹽之研究zh_TW
dc.titleThe application and development of a gaseous nitric oxide sensor for highly selective nitrite detectionen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:化學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.