Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/14307
標題: | 大鼠之低甲狀腺素症與肝纖維化之相關 The relationship between hypothyroidism and liver fibrosis in rats |
作者: | 蕭雲霞 Hsiao, Yun-Hsia |
關鍵字: | hypothyroidism;低甲狀腺素症;liver fibrosis;TGF-beta;MMPs;肝纖維化;TGF-beta;MMPs | 出版社: | 獸醫學系暨研究所 | 引用: | 1 Beetova TP, Sekamova SM. Sinusoidal cells of the liver and their role in pathologic processes. Arkh Patol 45:83-88, 1983. 2 Kischer CW, Hendrix MJ. Hendrix. Fibronectin in hypertrophic scars and keloids. Cell Tissue Res 231: 29-37, 1983. 3 Oren R, Dotan I, Papa M, Marravi Y. Inhibition of experimentally induced cirrhosis in rats by hypothyroidism.. Hepatology 24: 419-423, 1996. 4 Atzori L, Poli G, Perra A. Hepatic stellate cell: A star cell in the liver. Int J Biochem Cell Biol 41: 1639-1642, 2009. 5 Iredale JP, Benyon RC, Pickering J, McCullen M. Mechanisms of spontaneous resolution of rat liver fibrosis. J Clin Invest 102: 538-549, 1998. 6 Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102: 538-549, 1998. 7 Wang T, Shankar K, Ronis MJ, Mehendale HM. Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1, Metabolism of thioacetamide and thioacetamide S-oxide by rat liver microsomes. J Pharmacol Exp Ther 294: 473-479, 2000. 8 Kenneth LB. Principles and practice of endocrinology metabolism. 3: 314-351, 2000. 9 Malik R, Hodgson H. The relationship between the thyroid gland and the liver. QJM 95: 559-569, 2002. 10 Leonard DM, Stachelek SJ, Safran M, Farwell AP, Kowalik TF, Leonard JL. Cloning, expression, and functional characterization of the substrate binding subunit of rat type II iodothyronine 5' deiodinase. J Biol Chem 275: 25194-2201, 2000. 11 Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeildinases. Endocr Rev 23: 38-89, 2002. 12 Chopra IJ, Solomon DH, Hepner GW, Morgenstein AA. Misleadingly low free thyroxine index and usefulness of reverse triiodothyronine measurement in nonthyroidal illnesses. Ann Intern Med 90: 905-912, 1979. 13 Kayacetin E, Kisakol G, Kaya A. Low serum total thyroxine and free triiodothyronine in patients with hepatic encephalopathy due to non-alcoholic cirrhosis. Swiss Med Wkly 133: 210-213, 2003. 14 Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23: 38-89. 2002. 15 Bianchi GP, Zoli M, Marchesini G, Volta U, Vecchi F, Iervese T, Bonazzi C, Pisi E. Liver. Thyroid gland size and function in patients with cirrhosis of the liver 11: 71-77, 1991. 16 L''age M, Meinhold H, Wenzel KW, Schleusener H. Relations between serum levels of TSH, TBG, T4, T3, rT3 and various histologically classified chronic liver diseases. J Endocrinol Invest 3: 379-383, 1980. 17 Güven K, Kelestimur F, Yücesoy M. Thyroid function tests in non-alcoholic cirrhotic patients with hepatic encephalopathy. Eur J Med 2: 83-85, 1993. 18 Bruck R, Weiss S, Traister A, Zvibel I, Aeed H, Halpern Z, Oren R. Induced hypothyroidism accelerates the regression of liver fibrosis in rats. J Gastroenterol Hepatol 22: 2189-2194, 2007. 19 Oren R, Dotan I, Papa M, Marravi Y et al., Inhibition of experimentally induced cirrhosis in rats by hypothyroidism. Hepatology 24: 419-423, 1996. 20 Moses HL, Branum EL, Proper JA, Robinson RA.Transforming growth factor production by chemically transformed cells. Cancer Res 41: 2842-2848, 1981. 21 Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A 78: 5339-5343, 1981. 22 Corica F, Allegra A, Corsonello A, Buemi M, Rubino F, Bonanzinga S, Ruello A, Ceruso D. Incrased transforming frowth factor β1 plasma concentration is associated with high plasma 335triiodothyronie in elderly patients with nonthyroidal illnesses Eur J Endocrinol 138: 47-50, 1998. 23 Bissell DM, Roulot D, George J.Transforming growth factor beta and the liver. Hepatology 34: 859-867, 2001. 24 Doina Drugarin, Serban Negru, Andrea Koreck, Ioana Zosin and Corina Cristea. The pattern of a TH1 cytokine in autoimmune thyroiditis 21: 73-77, 2000. 25 Massagué J. The transforming growth factor-beta family. Annu Rev Cell 6: 597-641, 1990. 26 Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 342: 1350-1358, 2000. 27 Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 279: 845-850, 2000. 28 Jiang W, Yang CQ, Liu WB, Wang YQ, He BM, Wang JY. Blockage of transforming growth factor receptors prevents progression of pig serum-induced rat liver fibrosis. World J Gastroenterol 10: 1634-1638, 2004. 29 Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 279: 845-850, 2000. 30 Toda S, Nishimura T, Yamada S, Koike N, Yonemitsu N, Watanabe K, Matsumura S, Gärtner R, Sugihara H. Immunohistochemical expression of growth factors in subacute thyroiditis and their effects on thyroid folliculogenesis and angiogenesis in collagen gel matrix culture. J Pathol 188: 415-422, 1999. 31 Jiang Wei, Yang CQ and Liu WB. Blockage of transforming growth factor beta receptors prevents progression of pig serum-induced rat liver fibrosis. World journal of Gastroenterology 10: 1634-1638, 2004. 32 Del Pilar Alatorre-Carranza M, Miranda-Díaz A, Yañez-Sánchez I, Pizano-Martínez O, Hermosillo-Sandoval JM, Vázquez-Del Mercado M, Hernández-Hoyos S, Martínez-Abundis R, Fafutis-Morris M, Segura-Ortega J, Delgado-Rizo V. Liver fibrosis secondary to bile duct injury: correlation of Smad7 with TGF-beta and extracellular matrix proteins. BMC Gastroenterol 9: 81-99, 2009. 33 Maehara Y, Kakeji Y, Kabashima A, Emi Y, Watanabe A, Akazawa K, Baba H, Kohnoe S, Sugimachi K. Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma. J Clin Oncol 17: 607-614, 1999. 34 Ravitz MJ, Wenner CE. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-beta. Adv Cancer Res 71: 165-207, 1997. 35 Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2000 Nov;279(5):G845-50. Am J Physiol Gastrointest Liver Physiol 279: 845-850, 2000. 36 Del Pilar Alatorre-Carranza M, Miranda-Díaz A, Yañez-Sánchez I, Pizano-Martínez O, Hermosillo-Sandoval JM, Vázquez-Del Mercado M, Hernández-Hoyos S, Martínez-Abundis R, Fafutis-Morris M, Segura-Ortega J, Delgado-Rizo V. Liver fibrosis secondary to bile duct injury: correlation of Smad7 with TGF-beta and extracellular matrix proteins. BMC Gastroenterol 9:81-99, 2009. 37 Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 279: 845-850, 2000. 38 Bottner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling and roles in nervous system development and fuctions. J Neurochem 75: 2227-2250, 2000. 39 Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony PW Gottfried Y, Birkey RS, Caestecker MP de, Danielpour D, Book-Melamed N, Timberg R, Duckett CS, Lechleider RJ, Steller H, Orly J, Kim SJ, Roberts AB. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2: 915-921, 2000. 40 Oberhammer F, Bursch W, Parzefall W, Breit P, Erber E, Stadler M, Schulte-Hermann R. Effect of transforming growth factor beta on cell death of cultured rat hepatocytes. Cancer Res 51: 2478-2485, 1991. 41 Lin HY, Wang XF, Ng-Eaton E, Weinberg RA, Lodish HF. Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 68: 775-785, 1992. 42 Schuster N, Krieglstein K. Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res 307: 1-14, 2002. 43 Yanagisawa K, Osada H, Masuda A, Kondo M, Saito T, Yatabe Y, Takagi K, Takahashi T, Takahashi T. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-β in human normal lung epithelial cells. Oncogene 17: 1743-1737, 1998. 44 Landstrom M, Heldin NE, Bu S, Hermansson S, Itoh S, Dijke Pten, Heldin CH. Smad7 mediates apoptosis indued by transforming growth factor β in prostatic carcinoma cells. Curr Biol 10: 535-538, 2000. 45 Huang SA, Mulcahey MA, Crescenzi A, Chung M, Kim CB, Barnes C, Kuijt W, Turano H, Harney J, Harsen PR. Transforming growth factor β promotes inactivation of extracellular thyroid hormones via transcriptional stimulation of type 3 iodothyronine deiodinase. Molecular Endocri 19: 3126-3136, 2005. 46 Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis: Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102:538-549, 1998. 47 Bruck R, Weiss S, Traister A, Zvibel I, Aeed H, Halpern Z, Oren R. Induced hypothyroidism accelerates the regression of liver fibrosis in rats. J Gastroenterol Hepatol 22:2189-2194, 2007. 48 Westermarck J, Kahari V. Regulation of matrix metalloproteinase expression in tumor invasion, FASEB J 13: 781-792, 1999. 49 Xie B, Laouar A, Huberman E. Fibronectin-mediated cell adhesion is required for induction of 92-kDa type IV collagenase/ gelatinase(MMP-9) gene expression during macrophage differentiation. J Biol. Chem 273: 11567-11582, 1998. 50 Sehgal I, Thompson TC. Novel regulation of type IV collagenase (MMP-9 and -2) activites by transforming growth factor-β in human prostate cancer cell lines. Mol Biol. Cell 10: 407-416, 1999. 51 Bernhard E, Gruber S, Muschel R. Direct evidence linking expression of matrix metalloproteinase 9 to the metastatic phenotype in transformed rat embryo cells. Proc. Natl. Acad. Sci 91: 4293-4297, 1994. 52 Ambrose AM, DeEDS F, Rather LJ. Further studies on toxicity of thioacetamide in rats. Proc Soc Exp Biol Med74: 132-134, 1950. 53 Bruck Rafael, Oren R, Shirin H. Hypothyroidism minimizes liver damage and improves survival in rats with thioacetamide induced fulminant hepatic failure. Bruck Rafael, Weiss S and Traister A. Induced hypothyroidism accelerates the regression of liver fibrosis in rats. Journal of gastroenterology and hepatology 22: 2189-2194, 2006. 54 Muller A, Machinck F, Zimmermann T, Schubert H. Thioacetamide induced cirrhosis-like lesions in rats-usefulness and reliability of this animal model. Exp pathol 1988; 34:229-234. 55 Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N,et al. Formulation and application of a numerical scoring system forassessing histological activity in asymptomatic chronic activehepatitis. Hepatology 19: 1513-1519, 1994. 56 Oren R, Dotan I, Papa M, Marravi Y, Aeed H, Barg J, Zeidel L, Bruck R, Halpern Z. Inhibition of experimentally induced cirrhosis in rats by hypothyroidism Hepatology 24: 419-423, 1996. 57 Boxenbaum H. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin. J Pharmacokinet Biopharm 8:165-76, 1980. 58 Popper H, Uenfriend S. Hepatic fibrosis: Correlation of biochemical and morphologic investigations. Am J Med 49: 707-721, 1970. 59 Arthur MJ. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122:1525-1528, 2002. 60 Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ..Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102: 538-549, 1998. 61 Mathurin P, Duchatelle V, Ramond MJ, Degott C, Bedossa P, Erlinger S, Benhamou JP, Chaput JC, Rueff B, Poynard T. Survival and prognostic factors in patients with severe alcoholic hepatitis treated with prednisolone. Gastroenterology 110: 1847-1853, 1996. 62 Edwards DR, Murphy G, Reynolds JJ, Whitham SE, Docherty AJ, Angel P, Heath JK.Transforming growth factor β modulates the expression of collagenase and metalloproteinase inhibitor.EMBO J 6: 1899-1904, 1987. 63 Jiang W, Yang CQ, Liu WB, Wang YQ, He BM, Wang JY. Blockage of transforming growth factor β receptors prevents progression of pig serum-induced rat liver fibrosis. World J Gastroenterol 10: 1634-1638, 2004. 64 Lebensztejn DM, Sobaniec-Lotowska M, Kaczmarski M, Werpachowska I, Sienkiewicz J. Serum concentration of transforming growth factor (TGF)-β 1 does not predict advanced liver fibrosis in children with chronic hepatitis B. Hepatogastroenterology 51: 229-233, 2004. 65 Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125: 178-191, 2003. 66 Tahashi Y, Matsuzaki K, Date M, Yoshida K, Furukawa F, Sugano Y, Matsushita M, Himeno Y, Inagaki Y, Inoue K. Differential regulation of TGF-β signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 35: 49-61, 2002. 67 Seyhan H, Hamzavi J, Wiercinska E, Gressner AM, Mertens PR, Kopp J, Horch RE, Breitkopf K, Dooley S. Liver fibrogenesis due to cholestasis is associated with increased Smad7 expression and Smad3 signaling. J Cell Mol Med 10: 922-932, 2006. 68 Ihn H, Yamane K, Tamaki K. Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts. J Invest Dermatol 125: 247-255, 2005. 69 Parola M, Leonarduzzi G, Biasi F, Albano E, Biocca ME, Poli G, Dianzani MU. Vitamine E dietary supplementation protects against carbon tetrachloride-induced chronic liver damage and cirrhosis. Hepatology 16: 1014-1021, 1992. 70 Patil S, Wildey GM, Brown TL, Choy L, Derynck R, Howe PH. Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-β -induced growth inhibition and apoptosis. J Biol Chem 49: 38363-38370, 2000. 71 Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD, Sands E, Suliman I, Trim N, Knorr A, Arthur MJ, Benyon RC, Iredale JP. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126: 1795-1808, 2004. 72 Gold LI. The role for transforming growth factor-β induced apoptosis in primary cultures of hepatocytes by calpain inhibitors. Crit Rev Oncog 10: 303-360, 1999. 73 Massagué J. How cells read TGF-β signals. Nat Rev Mol Cell Biol 1: 169-178, 2000. 74 Teramoto T, Kiss A, Thorgeirsson SS. Induction of p53 and bax during TGF-β 1 initiated apoptosis in rat liver epithelial cells. Biochem Biophys Res Commun 251: 56-60, 1998. 75 Sanchez A, Alvarez AM, Benito M, Fabregat I. Transforming growth factor β modulates growth and differentiation of fetal hepatocytes in primary culture. J Cell Physiol 165: 398-405, 1995. 76 Armendariz-Borunda J, Katayama K, Seyer JM. Transcriptional mechanisms of type I collagen gene expression are differentially regulated by interleukin-1 β, tumor necrosis factor alpha, and transforming growth factor β in Ito cells. J Biol Chem 267: 14316-1421, 1992. 77 Hammel P, Couvelard A, O''Toole D, Ratouis A, Sauvanet A, Fléjou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Lévy P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 344: 418-423, 2001. 78 Perez-Tamayo R, Montfort I, Gonzalez E. Collagenolytic activity in experimental cirrhosis of the liver. Exp Mol Pathol 47: 300-308, 1987. 79 Benyon RC, JP. Iredale, S. Goddard, PJ. Winwood, and M. J. Arthur. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 110: 821-831, 1996. 80 C. J. Parsons, B. U. Bradford, C. Q. Pan, E. Cheung, M. Schauer, A. Knorr, B. Krebs, S. Kraft, S. Zahn, B. Brocks, N. Feirt, B. Mei, M. S. Cho, R. Ramamoorthi, G. Roldan, P. Ng, P. Lum, C. Hirth-Dietrich, A. Tomkinson, and D. A. Brenner. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 40: 1106-1115, 2004. 81 Arthur MJ. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122: 1525-1528, 2002. 82 Iredale JP, Goddard S, Murphy G, Benyon RC, Arthur MJ. Tissue inhibitor of metalloproteinase-I and interstitial collagenase expression in autoimmune chronic active hepatitis and activated human hepatic lipocytes. Clin Sci 89: 75-81, 1995. 83 Rezaei A, Ardestani SK, Forouzandeh M, Tavangar SM, Khorramizadeh MR, Payabvash S, Nezami BG, Jahanshiri Z, Tavakoli Z, Shariftabrizi A, Dehpour AR. The effects of N-acetylcysteine on the expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 in hepatic fibrosis in bile duct ligated rats. Hepatol Res 38: 1252-1263, 2008. 84 Préaux AM, Mallat A, Nhieu JT, D''Ortho MP, Hembry RM, Mavier P. Matrix metalloproteinase-2 activation in human hepatic fibrosis regulation by cell-matrix interactions. Hepatology 3: 944-950, 1999. 85 Kossakowska AE, Edwards DR, Lee SS, Urbanski LS, Stabbler AL, Zhang CL, Phillips BW, Zhang Y, Urbanski SJ. Altered balance between matrix metalloproteinase and their inhibitors in experimental biliary fibrosis. Am J Pathol 153: 1895-1902, 1998. 86 Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Fukui H. Tissue inhibitor of metalloproteinase-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hpatology 36: 850-860, 2002. 87 Poulsen LL, Hyslop RM, Ziegler DM. S-oxidation of thioureylenes catalyzed by a microsomal flavoprotein mixed-function oxidase. Biochem Pharmacol 23: 313-340, 1974. 88 Muller MJ Beke KHW, selberg O. Are patients with liver cirrhosis hypermetabolic. Clin Nutr 13: 131-44, 1994. 89 Venditti P, D'Rosa R, D'Meo S. Effect of thyroid state on susceptibility to oxidants and swelling of mitochondria from rat tissue. Free Radic Biol Med 35: 485-494, 2003. 90 Shi YB, Fu L, Hasebe T, Ishizuya-Oka A. Regulation of extracellular matrix remodeling and cell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development. Pharmacol Ther 116: 391-400, 2007. 91 Bruck R, Weiss S, Traister A, Zvibel I, Aeed H, Halpern Z, Oren R. Induced hypothyroidism accelerates the regression of liver fibrosis in rats. J Gastroenterol Hepatol 22: 2189-2194, 2007. 92 Oren R, Sikuler E, Wong F, Blendis LM, Halpern Z. The effects of hypothyroidism on liver status of cirrhotic patients. J Clin Gastroenterol 31: 162-173, 2000. 93 Bissell D M, S S Wang, W R Jarnagin, and F J Roll. Cell-specific expression of transforming growth factor-β in rat liver. J Clin Invest 96: 447-455, 1995. 94 Roth S, Schurek J, Gressner AM. Expression and release of the latent transforming growth factor β binding protein by hepatocytes from rat liver. Hepatology 25: 1398-1405, 1997. 95 Roulot D, Sevcsik AM, Coste T, Strosberg AD, Marullo S. Role of transforming growth factor β type II receptor in hepatic fibrosis: studies of human chronic hepatitis C and experimental fibrosis in rats. Hepatology 29: 1730-1738, 1999. 96 Maehara Y, Kakeji Y, Kabashima A, Emi Y, Watanabe A, Akazawa K, Baba H, Kohnoe S, Sugimachi K. Role of transforming growth factor-β 1 in invasion and metastasis in gastric carcinoma. J Clin Oncol 17: 607-614, 1999. 97 Kim YK, Lee BC, Ham BJ, Yang BH, Roh S, Choi J, Kang TC, Chai YG, Choi IG. Increased transforming growth factor-β1 in alcohol dependence. J Korean Med Sci 24: 941-944, 2009. 98 Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor β response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 31: 1094-1106, 2000. 99 Ruan M, Pederson L, Bradley EW, Bamberger AM, Oursler MJ. Transforming growth factor-{β} coordinately induces suppressor of cytokine signaling 3 and leukemia inhibitory factor to suppress osteoclast apoptosis. Endocrinology 151: 1713-1722, 2010. 100 Targher G, Montagnana M, Salvagno G, Moghetti P, Zoppini G, Muggeo M, Lippi G. Association between serum TSH, free T4 and serum liver enzyme activities in a large cohort of unselected outpatients. Clin Endocrinol 68: 481-484, 2008. 101 Bayraktar M, Van Thiel DH. Abnormalities in measures of liver function and injury in thyroid disorders. Hepatogastroenterology 44: 1614-1618, 1997. 102 Biscoveanu M, Hasinski S. Abnormal results of liver function tests in patients with Graves'' disease. Endocr Pract 6: 367-369, 2000. 103 Liaw YF, Huang MJ, Fan KD, Li KL, Wu SS, Chen TJ. Hepatic injury during propylthiouracil therapy in patients with hyperthyroidism. A cohort study. Ann Intern Med 118: 424-428, 1993. 104 Bayraktar M, Van Thiel DH. Abnormalities in measures of liver function and injury in thyroid disorders. Hepatogastroenterology 44: 1614-1618, 1997. 105 Schindhelm RK, Diamant M, Bakker SJ, van Dijk RA, Scheffer PG, Teerlink T, Kostense PJ, Heine RJ. Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus. Eur J Clin Invest 35: 369-374, 2005. 106 Suárez-Cuenca JA, Chagoya de Sánchez V, Aranda-Fraustro A, Sánchez-Sevilla L, Martínez-Pérez L, Hernández-Muñoz R. Partial hepatectomy-induced regeneration accelerates reversion of liver fibrosis involving participation of hepatic stellate cells. Exp Biol Med 233: 827-839, 2008. 107 Masson S, Scotté M, François A, Coeffier M, Provot F, Hiron M, Ténière P, Fallu J, Salier JP, Daveau M. Changes in growth factor and cytokine mRNA levels after hepatectomy in rat with CCl(4)-induced cirrhosis. Am J Physiol 277: 838-846, 1999. 108 Takahara T, Furui K, Yata Y, Jin B, Zhang LP, Nambu S, Sato H,Seiki M, Watanabe A. Dual expression of matrix metalloproteinase-2 and membrane-type 1 matrix metalloproteinase in fibrotic human livers. Hepatology 26: 1521-1529, 1997. | 摘要: | 肝纖維化是一個持續性的肝臟受損反應,病因可能由多種原因所造成,肝纖維化的形成是由於星狀細胞的活化,使之轉變為纖維母細胞樣,並且此過程中增加了膠原的合成以及減少其降解。Transforming growth factor beta (TGF-b)是一個多功能性的細胞激素,其可以調節受損之反應包括了纖維化的形成、生長的調節以及星狀細胞的凋亡等。之前的文獻已有對於低甲狀腺素症於動物模式中,用來防止肝纖維化的發展,但其中機制並未明瞭,因此,此篇文獻的目的主要在探討TGF-beta對於此一過程的作用。實驗選用30之成年雄性SD大鼠,以肝毒性藥物TAA進行腹腔注射,誘導其肝纖維化後,在進行分組給予低甲狀腺素誘導藥物,期間並測量AST,ALT,肝炎活性指數(Hepatitis activate index) 以及肝臟與體重之比值(liver weight/ body weight ratio),TGF-beta和MMP之活性與濃度等。結果顯示肝臟酵素ALT,AST在以PTU所誘導的低甲狀腺素症組中,有達到顯著下降的情形,而HAI和肝臟與體重之比值也有改善的情形,此結果說明了藉由藥物所誘導的低甲狀腺素症可促進肝臟功能的回復。在TGF-beta的測定中,以PTU組別有達到顯著下降的情形,並且MMP-2的濃度只有輕微的下降,但是MMP-2與MMP-9的活性皆有顯著上升,推測可能是由於PTU所誘導的低甲狀腺素症,對於TGF-beta有急遽下降的情形,導致MMP-2分泌的量輕微的下降,並且其活性大量的上升,造成肝臟中膠原結締組織的降解,進而達到肝臟纖維化的回復情形。因此在低甲狀腺素症中低濃度的T4對於TGF-beta的下降是有其影響性的,這使得MMP的活性能夠大幅度的上升,而達到肝臟纖維化改善的狀況。 Liver fibrosis is the result of continuous liver injury stemming from different etiological factors. In the formation of liver fibrosis, the activated hepatic stellate cell (HSC) turn into myofibroblast cell, and this process increase synthesis of collagen and decrease degradation. Transforming growth factor beta (TGF-b) is a multifunctional cytokine, which regulate the injury response including fibrogenesis, growth regulation and HSC apoptosis. It has been shown in previous studies that hypothyroidism prevents the development of liver fibrosis in animal model, but the mechanism still unclear. Thus, in this study we investigated the effect of TGF-beta on the mechanism of collagen. Blood samples were collected from 30 rats, for the measurement of TGF-beta levels, the liver function value such as alanine aminogransferase (ALT), asparatate aminotransferase (AST), Hepatitis activate index (HAI) and liver weight/ body weight (L/B) ratio. The concentrations of AST (P<0.05) and ALT in the group of PTU treatment was declining in comparison another two groups. Both of L/B ratio and HAI in PTU-induced group were significantly (P<0.05) decreased compared to control and MMI-induced groups. TGF-beta level was significantly (P<0.05) decreased after PTU-treatment. The activity of MMP-9 was getting significantly (P<0.05) increased but not the amount of MMP-9. The level of hepatic fibrosis was degradation after 2 months PTU treatment in the rat with hepatic fibrosis induced by TAA. The low T4 concentration may inhibit the release of TGF-beta in PTU-induced group. The activity of MMP-9 was increased but not the total concentration of MMP-9 which indicated that MMP-9 activity is affected by TGF-beta and triggers the processing of degradation of hepatic fibrosis. Actually, in the group with hypothyroidism induced by PTU, the TGF-beta was significantly decreased but the activity of MMP-9 was increased. The decreased TGF-beta level may affect the activity of MMP-9 which can reverse the established hepatic fibrosis in rats. Therefore, we hypothesized that low level of T4 may decrease the release of TGF-beta which induced the activity of MMP-9 that have the benefit on the reverse of established hepatic fibrosis in rats. |
URI: | http://hdl.handle.net/11455/14307 | 其他識別: | U0005-2906201008235500 |
Appears in Collections: | 獸醫學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.