Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14379
標題: 利用金奈米粒子之侷域性表面電漿共振效應提升染料敏化太陽能電池之光電流
Enhancement of Dye-Sensitized Photocurrents by Localized Surface Plasmonic Resonance Effects of Gold Nanoparticles
作者: 陳柏宏
Chen, Po-Hung
關鍵字: 局域性電漿共振;LSPR;染料敏化太陽能電池;二氧化鈦奈米線;金奈米粒子;四氯化鈦;DSSC;TiO2 nanowire;gold nanoparticle;TiCl4
出版社: 化學系所
引用: 1. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC 2007. 2. Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America 2007, 104 (50), 20142-20142. 3. Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S.; Lightfoot, H. D.; Manheimer, W.; Mankins, J. C.; Mauel, M. E.; Perkins, L. J.; Schlesinger, M. E.; Volk, T.; Wigley, T. M. L., Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298 (5595), 981-987. 4. Oregan, B.; Gratzel, M., A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS. Nature 1991, 353 (6346), 737-740. 5. 王勝民, 新世代的綠色產品—光催化觸媒. 化工資訊 2000, 14 (35). 6. Zhang, H.; Banfield, J. F., Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:  Insights from TiO2. The Journal of Physical Chemistry B 2000, 104 (15), 3481-3487. 7. Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003, 48 (5–8), 53-229. 8. (a) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews 1995, 95 (3), 735-758; (b) Hanaor, D. A. H.; Sorrell, C. C., Review of the anatase to rutile phase transformation. Journal of Materials Science 2011, 46 (4), 855-874. 9. Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S., Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4 (10), 3779-3804. 10. Chattopadhyay, S.; Huang, Y. F.; Jen, Y. J.; Ganguly, A.; Chen, K. H.; Chen, L. C., Anti-reflecting and photonic nanostructures. Materials Science & Engineering R-Reports 2010, 69 (1-3), 1-35. 11. Dobrowolski, J. A.; Poitras, D.; Ma, P.; Vakil, H.; Acree, M., Toward perfect antireflection coatings: numerical investigation. Appl. Optics 2002, 41 (16), 3075-3083. 12. Synowicki, R. A., Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 1998, 313, 394-397. 13. J.Q. Xi, M. F. S., J.K. Kim, E.F. Schubert, M. Chen, S.Y. Lin, W. Liu, J.A. Smart, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photon 2007, 1 (3). 14. Chen, J.-Z.; Ko, W.-Y.; Yen, Y.-C.; Chen, P.-H.; Lin, K.-J., Hydrothermally Processed TiO2 Nanowire Electrodes with Antireflective and Electrochromic Properties. ACS Nano 2012, 6 (8), 6633-6639. 15. Kam, Z., ABSORPTION AND SCATTERING OF LIGHT BY SMALL PARTICLES - BOHREN,C, HUFFMAN,DR. Nature 1983, 306 (5943), 625-625. 16. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P., Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 2000, 104 (45), 10549-10556. 17. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nature Materials 2008, 7 (6), 442-453. 18. Chen, X.; Zuo, L.; Fu, W.; Yan, Q.; Fan, C.; Chen, H., Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Solar Energy Materials and Solar Cells 2013, 111 (0), 1-8. 19. Kawawaki, T.; Takahashi, Y.; Tatsuma, T., Enhancement of Dye-Sensitized Photocurrents by Gold Nanoparticles: Effects of Plasmon Coupling. Journal of Physical Chemistry C 2013, 117 (11), 5901-5907. 20. Romo-Herrera, J. M.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M., Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011, 3 (4), 1304-1315. 21. Su, Y. H.; Teoh, L. G.; Lai, W. H.; Chang, S.-H.; Yang, H.-C.; Hon, M. H., Ellipsometric advances for local surface plasmon resonance to determine chitosan adsorption on layer-by-layer gold nanoparticles. Applied Spectroscopy 2007, 61 (9), 1007-1014. 22. Lucas, B. D.; Kim, J.-S.; Chin, C.; Guo, L. J., Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays. Advanced Materials 2008, 20 (6), 1129-+. 23. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. The Journal of Physical Chemistry B 2000, 104 (45), 10549-10556. 24. Hsu, C.-Y.; Huang, J.-W.; Gwo, S.; Lin, K.-J., The facile fabrication of tunable plasmonic gold nanostructure arrays using microwave plasma. Nanotechnology 2010, 21 (3). 25. Pan, C.; Dong, L., Fabrication of Gold-Doped Titanium Dioxide (Tio(2):Au) Nanofibers Photocatalyst by Vacuum Ion Sputter Coating. Journal of Macromolecular Science Part B-Physics 2009, 48 (5), 919-926. 26. Ma, Y. Z.; Cogdell, R. J.; Gillbro, T., Energy transfer and exciton annihilation in the B800-850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 10050). A femtosecond transient absorption study. J. Phys. Chem. B 1997, 101 (6), 1087-1095. 27. (a) Schaadt, D. M.; Feng, B.; Yu, E. T., Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters 2005, 86 (6); (b) Li, Z. Q.; Li, X. D.; Liu, Q. Q.; Chen, X. H.; Sun, Z.; Liu, C.; Ye, X. J.; Huang, S. M., Core/shell structured NaYF4:Yb3+/Er3+/Gd+3 nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells. Nanotechnology 2012, 23 (2). 28. Westphalen, M.; Kreibig, U.; Rostalski, J.; Luth, H.; Meissner, D., Metal cluster enhanced organic solar cells. Solar Energy Materials and Solar Cells 2000, 61 (1), 97-105. 29. (a) Ihara, M.; Tanaka, K.; Sakaki, K.; Honma, I.; Yamada, K., Enhancement of the Absorption Coefficient of cis-(NCS)2 Bis(2,2‘-bipyridyl-4,4‘-dicarboxylate)ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film. The Journal of Physical Chemistry B 1997, 101 (26), 5153-5157; (b) Hagglund, C.; Zach, M.; Kasemo, B., Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Applied Physics Letters 2008, 92 (1); (c) Standridge, S. D.; Schatz, G. C.; Hupp, J. T., Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2009, 131 (24), 8407-8409. 30. Su, Y. H.; Lai, W. H.; Teoh, L. G.; Hon, M. H.; Huang, J. L., Layer-by-layer Au nanoparticles as a Schottky barrier in a water-based dye-sensitized solar cell. Applied Physics a-Materials Science & Processing 2007, 88 (1), 173-178. 31. Gratzel, M., Applied physics: Solar cells to dye for. Nature 2003, 421 (6923). 32. Zhang, D.; Wang, M.; Brolo, A. G.; Shen, J.; Li, X.; Huang, S., Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes. Journal of Physics D-Applied Physics 2013, 46 (2). 33. Haruta, M., Size- and support-dependency in the catalysis of gold. Catalysis Today 1997, 36 (1), 153-166. 34. Fan-Tai Kong, S.-Y. D., and Kong-Jia Wang, Review of Recent Progress in Dye-Sensitized Solar Cells. Advances in OptoElectronics 2007, 2007, Article ID 75384. 35. 顏吟赬, The Role of the Control of Network Anatase-TiO2 on Electrodes. 2010. 36. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344. 37. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338. 38. H. Gerischer, H. T., h, Electrochemische Untersuchungen zur spectraleu sensibilisierung von ZnO Einkristallen. Ber. Bunsenges. Phys. Chem. 1968, 72, 437. 39. Hagfeldt, A.; Gratzel, M., LIGHT-INDUCED REDOX REACTIONS IN NANOCRYSTALLINE SYSTEMS. Chemical Reviews 1995, 95 (1), 49-68. 40. K. Tennakone, G. R. R. A. K., I. R. M. Kottegoda and V. P. S. Perera, An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun 1999, 15. 41. Ryan, M., PGM HIGHLIGHTS: Progress in Ruthenium Complexes for Dye Sensitised Solar Cells. Platinum Metals Rev. 2009, 53 (4). 42. Roy, S.; Bajpai, R.; Jena, A. K.; Kumar, P.; kulshrestha, N.; Misra, D. S., Plasma modified flexible bucky paper as an efficient counter electrode in dye sensitized solar cells. Energy Environ. Sci. 2012, 5 (5), 7001-7006. 43. Tan, E.-Z.; Yin, P.-G.; You, T.-t.; Wang, H.; Guo, L., Three Dimensional Design of Large-Scale TiO2 Nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection. Acs Applied Materials & Interfaces 2012, 4 (7), 3432-3437. 44. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., Handbook of x-ray photoelectron spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. 45. Liu, Y. C.; Lin, P. I.; Chen, Y. T.; Ger, M. D.; Lan, K. L.; Lin, C. L., Effect of TiO2 nanoparticles on the improved surface-enhanced Raman scattering of polypyrrole deposited on roughened gold substrates. J. Phys. Chem. B 2004, 108 (39), 14897-14900. 46. Kruse, N.; Chenakin, S., XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Applied Catalysis a-General 2011, 391 (1-2), 367-376. 47. Liu, Y.; Liu, C. Y.; Zhang, Z. Y.; Wang, C. Y., The surface enhanced Raman scattering effects of composite nanocrystals of Ag-TiO2. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2001, 57 (1), 35-39.
摘要: 
在此篇論文中,成功的將金奈米粒子修飾於二氧化鈦奈米線基板上,以SEM觀察其形貌與金奈米粒子的大小,透過Raman鑑定二氧化鈦奈米線的晶型,再以XPS與TEM觀察其結合的情形與接合之晶格面,並結合紫外光/可見光吸收光譜儀測量金奈米粒子的LSPR特性。最後將製成之基板應用於染料敏化太陽能電池上,探討其光電轉換效率表現與其電化學特性。
由實驗的結果發現,濺鍍金膜後並鍛燒所製成的基板,金奈米粒子與二氧化鈦奈米線間有很好的結合性。且濺鍍2.5nm厚的金膜所製成之基板,在染料敏化太陽能電池的應用上有最高的光電轉換效率,透過金奈米粒子之LSPR可提升染料光吸收的特性,可將光電轉換效率提升34.28%,其光電轉換效率為8.93%;而隨著濺鍍金膜厚度的增加,會造成二氧化鈦奈米線的損壞與電子再結合率的上升,致使光電轉換效率降低。
最後,透過四氯化鈦處理金修飾二氧化鈦基板,其光電轉換效率可達到9.73%,較一般FTO基板足足提升了55.76%。

In this work, we have successfully modified gold nanoparticles on the titanium dioxide nanowires substrates. The morphologies of gold/TiO2 were examined by field emission scanning electron microscope (FE-SEM). The crystalline of TiO2 nanowires were evaluated by raman spectroscopy and high resolution transmission electron microscope (HR-TEM). To get a closer insight into the interaction between gold nanoparticles and TiO2 nanowires, the characteristics of the Au 4f XPS peaks were utilized. In order to evaluate the effect of the surface plasmon resonance of gold nanoparticles on dye-sensitized solar cells, we measured the photoelectric transformation efficiency and electrochemical properties of DSSCs.
As a result, gold nanoparticles with (111) have a good bond with TiO2 nanowires (101).
By using the gold nanoparticles (from 2.5 nm gold film)/TiO2 nanowire electrodes, the best efficiency of DSSCs can reach 8.74%. The photoelectric transformation efficiencies have increased 34.28 % (from 6.25% to 8.39%) when compared with the DSSCs which had been made by FTO substrates which is attributed to the LSPR properties of gold nanoparticles. With increasing the thickness of the gold film will cause the destruction of TiO2 nanowire structure and decrease of the photoelectric transformation efficiencies.
After treatment of TiCl4, the photoelectric transformation efficiencies based on gold (from 2.5nm gold film)/TiO2 nanowire electrode will increase 55.76 % (6.25%~ 9.73%)when compared with the DSSCs which had been made by FTO substrates.
URI: http://hdl.handle.net/11455/14379
其他識別: U0005-2507201320103300
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.