Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14435
標題: 在無溶劑系統下以脂解酵素催化合成乙酸苯乙酯(玫瑰精油)之最佳化與動力學研究
Optimization and kinetic modeling of lipase catalyzed 2-phenylethyl acetate (rose essential oil) in a solvent-free system
作者: 陳玉旻
Chen, Yu-Min
關鍵字: 乙酸苯乙酯;2-phenethyl acetate;反應曲面法;動力學;無溶劑系統;玫瑰香味;RSM;kinetic;solvent-free;rose-like flavor
出版社: 化學系所
引用: 1. Janssens, L., et al., Production of flavours by microorganisms. Process Biochemistry, 1992. 27(4): p. 195-215. 2. Knudsen, J.T. and L. Tollsten, Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth‐pollinated taxa. Botanical Journal of the Linnean Society, 1993. 113(3): p. 263-284. 3. Mahapatra, P., et al., Kinetics of solvent-free geranyl acetate synthesis by Rhizopus oligosporus NRRL 5905 lipase immobilized on to cross-linked silica. Biocatalysis and Biotransformation, 2008. 27(2): p. 124-130. 4. 刘千瑜, 花香精油中的皇后——极品玫瑰精油. 中国科学美容, 2008(10): p. 58-59. 5. Somogyi, L., The flavour and fragrance industry: serving a global market. Chemistry and industry, 1996(5): p. 170-173. 6. SHAN, H., et al., A Novel Temperature-Controlled Ionic Liquid as the Medium for Phenylethyl Acetate Synthesis Catalyzed by Lipase. Chinese Journal of Catalysis, 2010. 31(3): p. 289-294. 7. Bauer, K., D. Garbe, and H. Surburg, Common fragrance and flavor materials. 1985: Wiley Online Library. 8. Yadav, G.D. and P.H. Mehta, Heterogeneous catalysis in esterification reactions: preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acidic catalysts. Industrial & engineering chemistry research, 1994. 33(9): p. 2198-2208. 9. Bertin, J., et al., Graphite electrolytic lamellar reagents in organic chemistry. Esterifications in the presence of graphite bisulfate. Journal of the American Chemical Society, 1974. 96(26): p. 8113-8115. 10. Etschmann, M.M.W., D. Sell, and J. Schrader, Production of 2‐phenylethanol and 2‐phenylethylacetate from L‐phenylalanine by coupling whole‐cell biocatalysis with organophilic pervaporation. Biotechnology and bioengineering, 2005. 92(5): p. 624-634. 11. Białecka-Florjańczyk, E., et al., Synthesis of 2-phenylethyl acetate in the presence of Yarrowia lipolytica KKP 379 biomass. Journal of molecular catalysis B: Enzymatic, 2011. 12. Dudareva, N., et al., Acetyl‐CoA: benzylalcohol acetyltransferase–an enzyme involved in floral scent production in Clarkia breweri. The Plant Journal, 1998. 14(3): p. 297-304. 13. Guterman, I., et al., Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant molecular biology, 2006. 60(4): p. 555-563. 14. Horchani, H., et al., Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresource technology, 2010. 101(8): p. 2809-2817. 15. Balcao, V.M. and F.X. Malcata, Lipase catalyzed modification of milkfat. Biotechnology advances, 1998. 16(2): p. 309-341. 16. Stevenson, D.E., et al., Combinatorial enzymic synthesis for functional testing of phenolic acid esters catalysed by Candida antarctica lipase B (NovozymR 435). Enzyme and microbial technology, 2007. 40(5): p. 1078-1086. 17. Vosmann, K., et al., Preparation of lipophilic alkyl (hydroxy) benzoates by solvent-free lipase-catalyzed esterification and transesterification. Applied microbiology and biotechnology, 2008. 80(1): p. 29-36. 18. Xin, J., et al., Lipase-catalyzed synthesis of ferulyl oleins in solvent-free medium. Food chemistry, 2009. 112(3): p. 640-645. 19. Babicz, I., et al., Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrasonics sonochemistry, 2010. 17(1): p. 4-6. 20. Garcia, R., et al., Enzymatic synthesis of n-octyl (+)-2-methylbutanoate ester from racemic (ą)-2-methylbutanoic acid by immobilized lipase: optimization by statistical analysis. Enzyme and microbial technology, 2002. 30(1): p. 110-115. 21. Garcia, R., et al., Enzymatic synthesis of n-octyl (+)-2-methylbutanoate ester from racemic ( )-2-methylbutanoic acid by immobilized lipase: optimization by statistical analysis. Enzyme and microbial technology, 2002. 30(1): p. 110-115. 22. Kristensen, J.B., X. Xu, and H. Mu, Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases. Journal of the American Oil Chemists'' Society, 2005. 82(5): p. 329-334. 23. Ju, H.Y., et al., Continuous lipase‐catalyzed synthesis of hexyl laurate in a packed‐bed reactor: optimization of the reaction conditions in a solvent‐free system. Journal of Chemical Technology and Biotechnology, 2009. 84(1): p. 29-33. 24. Balcao, V.M., A.L. Paiva, and F. Xavier Malcata, Bioreactors with immobilized lipases: state of the art. Enzyme and microbial technology, 1996. 18(6): p. 392-416. 25. Long, W.S., A. Kamaruddin, and S. Bhatia, Chiral resolution of racemic ibuprofen ester in an enzymatic membrane reactor. Journal of membrane science, 2005. 247(1): p. 185-200. 26. Demirel, D. and M. Mutlu, Performance of immobilized pectinex ultra SP-L on magnetic duolite-polystyrene composite particles. Part II: A magnetic fluidized bed reactor study. Journal of Food Engineering, 2005. 70(1): p. 1-6. 27. Xavier Malcata, F., et al., Immobilized lipase reactors for modification of fats and oils—a review. Journal of the American Oil Chemists'' Society, 1990. 67(12): p. 890-910. 28. Nielsen, N.S., et al., Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food chemistry, 2006. 94(1): p. 53-60. 29. Figueroa-Espinoza, M.C. and P. Villeneuve, Phenolic acids enzymatic lipophilization. Journal of agricultural and food chemistry, 2005. 53(8): p. 2779-2787. 30. H-Kittikun, A., W. Kaewthong, and B. Cheirsilp, Continuous production of monoacylglycerols from palm olein in packed-bed reactor with immobilized lipase PS. Biochemical Engineering Journal, 2008. 40(1): p. 116-120. 31. Kuo, C.H., et al., Enzymatic synthesis of rose aromatic ester (2‐phenylethyl acetate) by lipase. Journal of the Science of Food and Agriculture, 2012. 32. Chen, J.W. and W.T. Wu, Regeneration of immobilized Candida antarctica lipase for transesterification. Journal of bioscience and bioengineering, 2003. 95(5): p. 466-469. 33. Hsu, A.F., et al., Continuous production of ethyl esters of grease using an immobilized lipase. Journal of the American Oil Chemists'' Society, 2004. 81(8): p. 749-752. 34. Yang, T., et al., Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system. Journal of agricultural and food chemistry, 2005. 53(5): p. 1475-1481. 35. Royon, D., et al., Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource technology, 2007. 98(3): p. 648-653. 36. Halim, S.F.A., A.H. Kamaruddin, and W. Fernando, Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresource technology, 2009. 100(2): p. 710-716. 37. 呂峰洲 and 林仁混, 基礎酵素學. 1991, 聯經出版社. 38. Beg, Q.K., R. Saxena, and R. Gupta, Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnology and bioengineering, 2002. 78(3): p. 289-295. 39. Boyacı, İ.H., A new approach for determination of enzyme kinetic constants using response surface methodology. Biochemical Engineering Journal, 2005. 25(1): p. 55-62. 40. Sontakke, J.B. and G.D. Yadav, Optimization and kinetic modeling of lipase catalyzed enantioselective N‐acetylation of (±)‐1‐phenylethylamine under microwave irradiation. Journal of Chemical Technology and Biotechnology, 2011. 41. Institute, S., SAS/STAT User''s guide: Version 8. Vol. 1. 1999: SAS institute. 42. Chang, C., et al., Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology. New biotechnology, 2009. 26(3): p. 187-192.
摘要: 
香精與香料為在日成生活中為重要的添加劑,主要應用於食品、飼料、化妝品、化工、醫藥等行業,以及其他家用產品[1]。乙酸苯乙酯(2-phenethyl acetate,2-PEAc)為玫瑰花在開花時期,主要散發出的芳香物質[2]。乙酸苯乙酯為澄清淡黃色,味道類似於玫瑰花香,且常作用於香精與香料的添加劑。目前市面上大多數的乙酸苯乙酯皆是透過化學合成或是萃取所產生的。儘管如此,這些方法還是存在許多缺點,例如需在高溫或長時間底下反應、產生副產物、大量的廢水、刺鼻的臭味以及強酸腐蝕機器等問題。
在此實驗中,我們利用商業脂解酵素將苯乙醇(2-phenyl ethanol,2-PE)與乙酸乙酯(ethyl acetate,EA)在無溶劑系統底下催化合成乙酸苯乙酯[3]。 整個實驗分成批次式與連續式兩部分。在實驗的第一部分,為了找到合成乙酸苯乙酯之最佳化條件以及其動力學參數Km與Vmax,我們應用了五階二變中心混成實驗設計(Central Composite Design,CCD)和反應曲面法(Response Surface Methodology,RSM)來計算反應變數對整體反應的影響,其中包含反應溫度(45℃~65℃)以及苯乙醇濃度(100 mM~500 mM)在反應初速率、乙酸苯乙酯之莫耳轉化率以及其產量上的影響。基於RSM的分析,合成乙酸苯乙酯之最佳反應條件應為,反應溫度60.18℃以及苯乙醇濃度447.16 mM。在此條件下,反應初速率可達13.17 mM/min、在120分鐘時的轉化率為89.53 %,以及其產量為60.86 g/L。根據雙基質動力學反應,ping-pong bi-bi動力學模式以及RSM的數據,可計算出動力學參數,包括在反應溫度為55℃時之動力學參數Vmax (27.62 mM/min), Km (443.07 mM) 以及 Ki (414.85 mM)。
在實驗的第二部分,利用連續式酵素填充床生物反應器催化合成乙酸苯乙酯,在這部分是應用了三階三變Box-Behnken實驗設計(Box-Behnken design)方式合成乙酸苯乙酯,其中反應變數包含,苯乙醇濃度(100-500 mM)、反應流速(1-5 mL/min)及反應溫度(45-65 ℃),然後再以反應曲面法(response surface methodology,RSM)進行分析,分別探討合成反應參數對莫耳轉換率的影響。最後,利用脊型分析(analysis of ridge max)詳細探討酵素合成乙酸苯乙酯之最佳化反應條件。結果顯示,填充 10000 PLU固定化酵素NovozymR 435 於連續式酵素填充床生物反應器,合成乙酸苯乙酯之最佳化條件為:苯乙醇濃度62.007 mM、反應溫度 54.03 ℃及反應流速2.75 mL/min及,莫耳轉換率之理論值與實驗值分別為 100.22 %及 99.01±0.09 %。

Flavors’ and fragrances are important additive, mainly applied in food, feed, cosmetic, chemical, pharmaceutical industries, and other household products[1]. 2-phenylethyl acetate(2-PEAc) is a major emission of aromatic volatile ester from rose flowers, when the roses bloom[2]. 2-PEAc is colorless and smelling like sweet rose fragrance, and it generally used as an additive flavor and fragrances. Most of the 2-PEAc are now produced via chemical synthesis or extraction. However, chemical processes have several drawbacks, such as high/long reaction temperature/ time, side products, discharging wastewater, irritating smell, corrosiveness of machine etc…
In this study, we used commercial immobilized lipase to catalyze transesterification to synthesis 2-PEAc from 2-PE and ethyl acetate (EA) in a solvent-free system [3]. There are two parts in this research, one of parts is in a batch reactor and another part is in a continuous packed-bed bioreactor. In the first part, 5-level-2-factor central composite design (CCD) and response surface methodology (RSM) were employed to evaluate the effects of synthesis parameters, including reaction temperature (45~65 ℃), concentration of 2-PE (100~500 mM) on initial rate, yield of 2-PEAc, and productivity, in order to search the optimal reaction conditions and calculate the kinetic parameters, Vmax and Km. Based on the RSM analysis, the optimal conditions was found at reaction temperature of 60.18 ℃ and concentration of 2-PE 447.16 mM. The initial rate 13.17 mM/min, yield of 2-PEAc 89.53 %, and productivity 60.86 g/L were obtained under the optimal conditions. According to the ping-pong bi-bi kinetic model, the kinetic parameters, including Vmax (27.62 mM/min), Km (443.07 mM) and Ki (414.85 mM) were calculated form RSM data at 55 ℃. In the second part, a continuous packed-bed bioreactor was used for synthesis of 2-PEAc, 3-level-3-factor Box-Behnken design and response surface methodology (RSM) were employed to evaluate the effects of synthesis parameters, including concentration of 2-PE (100~500 mM), flow rate(1~5 mL/min) and reaction temperature (45~65 ℃). Based on ridge maximum analysis, we use the analysis of ridge maximum to search the optimal reaction conditions for synthesis of 2-PEAc were: concentration of 2-PE 62.07 mM, reaction temperature 54.03 ℃, and flow rate 2.75 mL/min. The molar conversion of predicted values and actual experimental values were 100.22 % and 99.01±0.09 % respectively.
URI: http://hdl.handle.net/11455/14435
其他識別: U0005-0108201202404800
Appears in Collections:化學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.