Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/14552
標題: 轉殖胰島素基因及幹細胞降低糖尿病大白鼠血糖之研究
Transfection of rat insulin gene with retrovirus vector and stem cell in diabetic rat
作者: 賴敏銓
Lai, Min-Chuan
關鍵字: 胰島素基因;insulin gene;幹細胞;糖尿病大白鼠;stem cell;diabetic rat
出版社: 獸醫學系暨研究所
引用: 鄧子華(民94)。Linoleic acid 對大白鼠胰臟分泌胰島素之影響 (碩士論文)國立中興大學獸醫學研究所。 羅玉珊(民97)。Demethylasterriquinone B-l對大白鼠胰臟分泌胰島素之影響 (碩士論文)國立中興大學獸醫學研究所。 Ahlgren U., Johsson J., Edlund H. (1996) The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/ PDX1-deficient mice. Development ; 122: 1409-1416. American Diabetes Association. (2013) Clinical Practice Recommendations. Diabetes Care ; 36(Suppl 1): S4-S10. Bendayan P., Galinier M., Rochiccioli J. P., and Bounhoure J. P. (1990) [Pheochromocytoma: how to prevent a fatal course? A case report and review of the literature]. Cardiol. Angeiol. (Paris) 39(8):461-466. Berns K. (1996) Parvoviridae in Fundamental Virology third edition. Lippincott-Raven pp: 1017-1035. Blmer U., Naldini L., Kafri T., Trono D., Verma I. M., and Gage F. H. (1997) Highly efficient and sustained gene transfer in adult neurones with a lentivirus vector. Journal of Virology 71: 6641-6649. Bochan M. R., Sidner R. A., Shah R., Cummings O. W., Goheen M., and Jindal R. M. (1998) Stable transduction of human pancreatic adenocarcinoma cells, rat fibroblasts, and bone marrow-derived stem cells with recombinant adeno-associated virus containing the rat preproinsulin II gene. Transplant Proc. 30(2): 453-454. Bonini C., Ferrari G., Verzeletti S., Servida P., Zappone E., Ruggieri L., Ponzoni M., Rossini S., Mavilio F., Traversari C., and Bordignon C. (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276(5319): 1719-1724. Callejas D., Mann C. J., Ayuso E., Lage R., Grifoll I., Roca C., Andaluz A., Ruiz-de Gopegui R., Montané J., Muñoz S., Ferre T., Haurigot V., Zhou S., Ruberte J., Mingozzi F., High K. A., Garcia F. and Bosch F. (2013) Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes 2013 May; 62(5): 1718-1729. Chen H., Mack L. M., Kelly R., Ontell M., Kochanek S., and Clemens P. R. (1997) Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc. Natl. Acad. Sci. 94: 1645-1650. Corkey B. E., Deeney J. T., Yaney G. C., Tornheim K. and Prentki M. (2000) The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J. Nutr. 130: 299S-304S. Cornelius J. G., Tchernev V., Kao K. J. and Peck A. B. (1997) In vitro generation of islets in longterm cultures of pluripotent stem cells from adult mouse pancreas. Hom. Metab. Res. 29: 271-277. Dor Y., Brown J., Martinez O. I., Melton D. A. (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 6; 429(6987): 41-46. Falqui L., Martinenghi S., Severini G. M., Corbella P., Taglietti M. V., Arcelloni C., Sarugeri E., Monti L. D., Paroni R., Dozio N., Pozza G., and Bordignon C. (1999) Reversal of diabetes in mice by implantation of human fibroblasts genetically engineered to release mature human insulin. Hum. Gene Ther. 20; 10(11): 1753-1762. Feldman L., Rixon F. J., Jean J. H., Ben-Porat T., and Kaplan A. S. (1979) Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled. Virology 97(2): 316-327. Ferber S., Halkin A., and Cohen H. (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. May; 6(5): 568-572. Fernandes A., King L. C., Guz Y., Stein R., Wright C. V., and Teitelman G. (1997) Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology 1997 Apr; 138(4): 1750-1762. Freeman D. J., Leclerc I., and Rutter G. A. (1999) Present and potential future use of gene therapy for the treatment of non-insulin dependent diabetes mellitus (Review). Int. J. Mol. Med. 4(6): 585-592. Genuth S., (1992) Management of the adult onset diabetes with sulfonylurea drug failure. Endocrinol. Metab. Clin. 21: 351-370. Gishizky M. L., and Grodsky G. M. (1987) Differential kinetics of rat insulin I and II processing in rat islets of Langerhans. FEBS Lett Nov 2; 223(2): 227-231. Gross D., Skvorak A., Hendrick G., Weir G., Villa-Komaroff L., and Halban P. (1988) Oxidation of rat insulin II, but not I, leads to anomalous elution profiles upon HPLC analysis of insulin-related peptides. FEBS Lett. 5; 241(1-2): 205-208. Hazelwood R. L., and Cieslak S. R. (1989) In vitro release of pancreatic hormones following 99% pancreatectomy in the chicken. Gen. Comp. Endocrinol. 73(2): 308-317. Hellman B., Gylfe E., Bergsten P., Grapengiesser E., Lund P. E., Berts A., Tengholm A., Pipeleers D. G., and Ling Z. (1994) Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells. Diabetologia 37 Suppl 2: S11-20. Jean-Michel H. Vos. (1995) Retroviral vector in human gene therapy in Viruses in human gene therapy. Chapman & Hall pp: 77-107. Kafri T., Blmer U., Peterson D. A., Gage F. H., and Verma I. M. (1997) Sustained expression of genes delivered into liver and muscle by lentiviral vectors. Nature Genetics 17: 314-317. Kahn A. (2000) Converting hepatocytes to β-cells a new approach for diabetes? Nat. Med. May; 6(5): 505-506. Lakshmikumaran M. S., D''Ambrosio E., Laimins L. A., Lin D. T., and Furano A. V. (1985) Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus. Mol. Cell Biol. 5(9): 2197-2203. Leibowitz G., Beattie G. M., Kafri T., Cirulli V., Lopez A. D., Hayek A., and Levine F. (1999) Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes 48(4): 745-753. Li R., Oka K., and Yechoor V. (2012) Neo-islet formation in liver of diabetic mice by helper-dependent adenoviral vector-mediated gene transfer. J. Vis. Exp. Oct 10; (68), 3791-4321. Lomedico P., Rosenthal N., Efstratidadis A., Gilbert W., Kolodner R., and Tizard R. (1979) The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18(2): 545-558. Matsumoto T., Yamaguchi M., Kuzume M., Matsumiya A., and Kumada K. (2003) Insulin gene transfer with adenovirus vector via the spleen safely and effectively improves posthepatectomized conditions in diabetic rats. J. Surg. Res. Mar; 110(1): 228-234 Merten O.W., Gény-Fiamma C., and Douar A. M. (2005) Current issues in adeno-associated viral vector production. Gene Therapy 12, S51–S61. Naldini L., Blmer U., Gallay P., Ory D., Mulligan, R., Gage F. H., Verma I. M., and Trono D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263-267. National Diabetes Data Group. (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979; 28: 1039-1057. Peng L, Sidner R. A., Bochan M. R., Burton M. M., Cooper S. T., and Jindal R. M. (1997) Construction of recombinant adeno-associated virus vector containing the rat preproinsulin II gene J. Surg. Res. 69(1): 193-198. Prentki M., Tornheim K., and Corkey B. E. (1997) Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia 40: S32-41. Rabinovitch A, Suarez-Pinzon W., Strynadka K., Ju Q., Edelstein D., Brownlee M., Korbutt G. S., and Rajotte R. V. (1999) Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects beta-cells from cytokine-induced destruction. Diabetes 48(6): 1223-1229. Rivard A., Silver M., Chen D., Kearney M., Magner M., Annex B., Peters K., and Isner J. M. (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 154(2): 355-363. Roizman B. (1996) The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc. Natl. Acad. Sci. 15;93(21): 11307-11312. Rossini S., Mavilio F., Traversari C., and Bordignon C. (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276(5319): 1719-1724. Samulski R. J., Chang L., and Shenk T. (1989) Helper free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. Journal of Virology 63: 3822-3828. Sander M., and German M. S. (1997) The beta cell transcription factors and development of the pancreas. J. Mol. Med. May; 75(5): 327-340. Serup P., Madsen O. D., and Mandrup-Poulsen T. (2001) Islet and stem cell transplantation for treating diabetes. BMJ. Jan 6; 322(7277): 29-32. Shah R., Sidner R. A., Bochan M. R., and Jindal R. M. (1999) Reversal of diabetes in streptozotocin-treated rats by intramuscular injection of recombinant adeno-associated virus containing rat preproinsulin II gene. Transplant Proc. 31(1-2): 641-642. Sharma A., Zangen D. H., Reitz P., Taneja M., Lissauer M. E., Miller C. P., Weir G.. C., Habener J. F., and Bonner-Weir S. (1999) The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes Mar; 48(3): 507-513. Smith A. E. (1995) Viral vectors in gene therapy. Annual Review of Microbiology 49: 807-838. Soares M. B., Schon E., Henderson A., Karathanasis S. K., Cate R., Zeitlin S., Chirgwin J., and Efstratiadis A. (1985) RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol. Cell. Biol. 5(8): 2090-2103. Steiner D. F., Cunningham D., Spigelman L., and Aten B. (1967) Insulin biosynthesis: evidence for a precursor. Science 11; 157(789): 697-700. Sugiyama, S. Hattori, S. Tanaka, F. Isoda, S. Kleopoulos, M. Rosenfeld, M. Kaplitt, H. Sekihara and C. V. Mobbs. (1995) Development defective adeno-associated viral vector construct for transfection and expression of insulin gene in liver cells in vitro and in vivo. Diabetes 44(Supp1): 128A. Takahashi K., Okita K., Nakagawa M., and Yamanaka S. (2007) Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols 2(12): 3081-3089. The Expert Committee on the Diagnosis and Classilication of Diabetes Mellitus. (1997) Report of the Expet Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20: 1-15. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., and Goodman H. M. (1977) Rat insulin genes: construction of plasmids containing the coding sequences. Science 17; 196(4296): 1313-1319. Villa-Komaroff L., Efstratiadis A., Broome S., Lomedico P., Tizard R., Naber S. P., Chick W. L., and Gilbert W. (1978) A bacterial clone synthesizing proinsulin. Proc. Natl. Acad. Sci. 75(8): 3727-3731. Vincent K. A., Piraino S. T., and Wadsworth S. C. (1997) Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products. Journal of Virology 71: 1897-1905. Watson J., Gilman M., Witkowski J., and Zoller M. (1997) Transferring Gene into Mammalian Cell in Recombinant DNA SCIENTIFIC AMERICAN BOOKS pp: 226-230. World Health Organization. Delinition, Diagnosis, and Classilication of Diabetes Mellitus and its Complications. Report of a WHO consultation. Part 1. (1999) Diagnosis and Classilication of Diabetes Mellitus. Geneva: World Health Organization. Xiao X., Li J., and Samulski R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. Journal of Virology 72: 2224-2232.
摘要: 
人類和動物的糖尿病患通常透過飲食控制及口服藥物(如:sulfonylurea)或注射胰島素予以治療,但是注射給藥有所不便,注射過量易造成血糖過低甚而致死,口服雖較方便安全,但將近有25-30 %患者無法達到滿意之控制,因此有必要發展其他可以改善人類及動物第1型糖尿病的方法。近年來,利用基因治療的方式,將胰島素基因轉殖入非胰島細胞,以合成胰島素成為治療糖尿病的方法之一,目前已知所使用之病毒載體有反轉錄病毒(Retrovirus)、Lentivirus、腺病毒(Adenovirus)、Adeno-associated virus及疱疹病毒(Herpes simplex virus)等成功轉殖入細胞或體內合成胰島素,但是使用上各有其優缺點。本研究之過程以選殖大白鼠胰島素Ⅰ基因全長,及其起動子(promoter)與促進子(enchancer),分別嵌入已構築好之反轉錄病毒載體後,轉殖入老鼠纖維母細胞中形成完整的病毒顆粒後,合成與表現大白鼠之胰島素,3天後以競爭性放射免疫法(radioimmunoassay)測定胰島素之含量。結果顯示反轉錄病毒表現載體確實能表現胰島素基因,其表現量最高可達到4806.35 ± 53.72 (pg/ml);實驗顯示含有起動子與促進子的胰島素基因,其胰島素的表現量比未包含起動子與促進子的胰島素基因高出61 %,可見胰島素起動子與促進子基因在表現系統中有其調控的重要性;同時將已完成轉殖胰島素基因之老鼠纖維母細胞注射入糖尿病大白鼠胰臟中,10天內糖尿病大白鼠血糖有明顯下降之趨勢;顯見利用反轉錄病毒載體轉殖胰島素基因可做為大白鼠體內或體外之治療模式。除此之外,研究顯示取代或更新糖尿病患者受損胰臟β細胞的療法,在未來是很有潛力的治療方式,目前已知的β細胞包括成熟的幹細胞與胚胎來源的幹細胞,成熟的幹細胞主要位於胰小管的上皮細胞及胰島細胞,胚胎來源幹細胞則由骨髓而來;然而在胰臟組織的生成中還包含了β細胞本身再生作用。本實驗嘗試以異體移殖胰島細胞(islet)治療糖尿病大白鼠,結果發現β細胞複製與分化,且血糖有明顯下降的現象。雖然本實驗對於β細胞分化與生成的作用過程,目前仍無法完全明瞭。無論如何,上述療法的建構,將促使對調控β細胞及幹細胞增殖機制之胰臟內分泌學有更重要的了解。

Human and animal diabetes mellitus were controlled by a dietary treatment supplemented with either a sulfonylurea drug or insulin injection. Insulin injections were inconvenient and the hypoglycemia induced by insulin-overdose could be fatal. Sulfonylurea drugs were administered orally, however, did not typically provide satisfactory control of blood glucose as a starting treatment in 25-30% patients. Therefore, it was imperative to develop a method for the control of human and animal type 1 diabetes mellitus. Recently, insulin gene transferred and expressed in non-pancreatic cells as a means for the treatment of diabetes was developed rapidly in the expanding gene therapy. Retrovirus, lentivirus, adenovirus, adenoassociated virus and herpes simplex had been used as viral vectors, and the constructed viral-insulin gene was successfully transferred into diabetic rat cells. A gene, containing promoter, enhancer and rat type I insulin gene (a-chain, b-chain and signal peptide), was constructed into a retrovirus vector in the study. The constructed viral-insulin gene was transferred into mouse fibroblast cell. The insulin concentration in 3-day cultured mouse fibroblast cells was 4806.35 � 53.72 pg/ml. The insulin concentration for the viral vector containing enhancer and promoter of rat insulin gene was higher than the vector containing only insulin gene by a 61% increase in the cultured mouse fibroblast cells. The enhancer and promoter activity of rat insulin gene would be an important determinant for the expression of insulin gene. The secreted amount of insulin by retrovirus vector contained enhancer/promoter gene in this study could achieve as high concentrations (4806.35 � 53.72 pg/ml) as the insulin injection therapy. Blood glucose decreased significantly for at last 10 days demonstrated that transfection, direction injection of viral-insulin gene into pancreas of diabetic rat, was successful. These studies suggested that the retrovirus vector might be used to transfer the insulin gene in vitro and in vivo. Replacement or regeneration of beta cells in diabetes patients were therapeutic interventions that hold promise in the treatment of diabetes mellitus in the future. It was recognized that these adult pancreatic stem or progenitor beta cells resided in the epithelium of pancreatic ducts, islets, and bone marrow. In addition, it had also been suggested that new islet was also formed by the neogenesis of beta cell residues in existing islets. At present, allogeneic islet transplantation has been explored as a treatment for diabetic rat. After transplantation, the entire mass of beta cells in rats decreased slowly, and subsequently replenished with differentiation beta cells, as well as, blood glucose decreased significantly. Although the mechanism of replacement or regeneration of beta cell has not been fully understand, the development of such therapy will promote to fundamentally understand the mechanisms in regulating beta and stem cells proliferation in the pancreatic endocrinology.
URI: http://hdl.handle.net/11455/14552
其他識別: U0005-1908201308203500
Appears in Collections:獸醫學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.